Classification of crystallization outcomes using deep convolutional neural networks

被引:57
|
作者
Bruno, Andrew E. [1 ]
Charbonneau, Patrick [2 ,3 ]
Newman, Janet [4 ]
Snell, Edward H. [5 ,6 ]
So, David R. [7 ]
Vanhoucke, Vincent [7 ]
Watkins, Christopher J. [8 ]
Williams, Shawn [9 ]
Wilson, Julie [10 ]
机构
[1] SUNY Buffalo, Ctr Computat Res, Buffalo, NY USA
[2] Duke Univ, Dept Chem, Durham, NC 27706 USA
[3] Duke Univ, Dept Phys, Durham, NC 27706 USA
[4] CSIRO, Collaborat Crystallisat Ctr, Parkville, Vic, Australia
[5] Hauptman Woodward Med Res Inst, Buffalo, NY USA
[6] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY USA
[7] Google Inc, Google Brain, Mountain View, CA 94043 USA
[8] CSIRO, IM&T Sci Comp, Clayton, Vic, Australia
[9] GlaxoSmithKline Inc, Platform Technol & Sci, Collegeville, PA USA
[10] Univ York, Dept Math, York, N Yorkshire, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
基金
美国国家科学基金会;
关键词
PROTEIN-CRYSTALLIZATION; VISUAL ANALYSIS; TRAINING SET; IMAGES; TEXTURE;
D O I
10.1371/journal.pone.0198883
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [2] Flower classification using deep convolutional neural networks
    Hiary, Hazem
    Saadeh, Heba
    Saadeh, Maha
    Yaqub, Mohammad
    IET COMPUTER VISION, 2018, 12 (06) : 855 - 862
  • [3] Gas Classification Using Deep Convolutional Neural Networks
    Peng, Pai
    Zhao, Xiaojin
    Pan, Xiaofang
    Ye, Wenbin
    SENSORS, 2018, 18 (01)
  • [4] Gender and Smile Classification using Deep Convolutional Neural Networks
    Zhang, Kaipeng
    Tan, Lianzhi
    Li, Zhifeng
    Qiao, Yu
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 739 - 743
  • [5] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [6] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [7] Water stress classification using Convolutional Deep Neural Networks
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 311 - 328
  • [8] Cystoscopy Image Classification Using Deep Convolutional Neural Networks
    Hashemi, Seyyed Mohammadreza
    Hassanpour, Hamid
    Kozegar, Ehsan
    Tan, Tao
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 193 - 205
  • [9] Nanoparticles Ordering Classification Using Deep Convolutional Neural Networks
    Amarif, Mabroukah
    Aejaal, Asmaah
    Ateeyah, Haleemah
    Journal of Nano Research, 2024, 86 : 57 - 66
  • [10] CLASSIFICATION OF DERMOSCOPY PATTERNS USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Demyanov, Sergey
    Chakravorty, Rajib
    Abedini, Mani
    Halpern, Alan
    Garnavi, Rahil
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 364 - 368