Classification of crystallization outcomes using deep convolutional neural networks

被引:62
|
作者
Bruno, Andrew E. [1 ]
Charbonneau, Patrick [2 ,3 ]
Newman, Janet [4 ]
Snell, Edward H. [5 ,6 ]
So, David R. [7 ]
Vanhoucke, Vincent [7 ]
Watkins, Christopher J. [8 ]
Williams, Shawn [9 ]
Wilson, Julie [10 ]
机构
[1] SUNY Buffalo, Ctr Computat Res, Buffalo, NY USA
[2] Duke Univ, Dept Chem, Durham, NC 27706 USA
[3] Duke Univ, Dept Phys, Durham, NC 27706 USA
[4] CSIRO, Collaborat Crystallisat Ctr, Parkville, Vic, Australia
[5] Hauptman Woodward Med Res Inst, Buffalo, NY USA
[6] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY USA
[7] Google Inc, Google Brain, Mountain View, CA 94043 USA
[8] CSIRO, IM&T Sci Comp, Clayton, Vic, Australia
[9] GlaxoSmithKline Inc, Platform Technol & Sci, Collegeville, PA USA
[10] Univ York, Dept Math, York, N Yorkshire, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
基金
美国国家科学基金会;
关键词
PROTEIN-CRYSTALLIZATION; VISUAL ANALYSIS; TRAINING SET; IMAGES; TEXTURE;
D O I
10.1371/journal.pone.0198883
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] CLASSIFICATION OF DERMOSCOPY PATTERNS USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Demyanov, Sergey
    Chakravorty, Rajib
    Abedini, Mani
    Halpern, Alan
    Garnavi, Rahil
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 364 - 368
  • [12] Space Object Classification Using Deep Convolutional Neural Networks
    Linares, Richard
    Furfaro, Roberto
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1140 - 1146
  • [13] Assessment of Asteroid Classification Using Deep Convolutional Neural Networks
    Bacu, Victor
    Nandra, Constantin
    Sabou, Adrian
    Stefanut, Teodor
    Gorgan, Dorian
    AEROSPACE, 2023, 10 (09)
  • [14] Solar Event Classification Using Deep Convolutional Neural Networks
    Kucuk, Ahmet
    Banda, Juan M.
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 118 - 130
  • [15] Using Deep Convolutional Neural Networks for Earthquake and Explosion Classification
    Hong, Mingquan
    Zhang, Hongcai
    Wu, Lihua
    Chen, Jialiang
    Dai, Lijin
    Wang, Lujun
    Dong, Tengchao
    Yang, Jinling
    Fang, Lihua
    IEEE ACCESS, 2025, 13 : 56144 - 56159
  • [16] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [17] WEATHER CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Elhoseiny, Mohamed
    Huang, Sheng
    Elgammal, Ahmed
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3349 - 3353
  • [18] Plankton Classification with Deep Convolutional Neural Networks
    Ouyang Py
    Hu Hong
    Shi Zhongzhi
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 132 - 136
  • [19] Malware Classification with Deep Convolutional Neural Networks
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil D. B.
    Wang, Yang
    Iqbal, Farkhund
    2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,
  • [20] Race Classification from Face using Deep Convolutional Neural Networks
    Wu, Xulei
    Yuan, Peijiang
    Wang, Tianmiao
    Gao, Doudou
    Cai, Ying
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 1 - 6