Classification of crystallization outcomes using deep convolutional neural networks

被引:62
|
作者
Bruno, Andrew E. [1 ]
Charbonneau, Patrick [2 ,3 ]
Newman, Janet [4 ]
Snell, Edward H. [5 ,6 ]
So, David R. [7 ]
Vanhoucke, Vincent [7 ]
Watkins, Christopher J. [8 ]
Williams, Shawn [9 ]
Wilson, Julie [10 ]
机构
[1] SUNY Buffalo, Ctr Computat Res, Buffalo, NY USA
[2] Duke Univ, Dept Chem, Durham, NC 27706 USA
[3] Duke Univ, Dept Phys, Durham, NC 27706 USA
[4] CSIRO, Collaborat Crystallisat Ctr, Parkville, Vic, Australia
[5] Hauptman Woodward Med Res Inst, Buffalo, NY USA
[6] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY USA
[7] Google Inc, Google Brain, Mountain View, CA 94043 USA
[8] CSIRO, IM&T Sci Comp, Clayton, Vic, Australia
[9] GlaxoSmithKline Inc, Platform Technol & Sci, Collegeville, PA USA
[10] Univ York, Dept Math, York, N Yorkshire, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
基金
美国国家科学基金会;
关键词
PROTEIN-CRYSTALLIZATION; VISUAL ANALYSIS; TRAINING SET; IMAGES; TEXTURE;
D O I
10.1371/journal.pone.0198883
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Classification of vehicle types using fused deep convolutional neural networks
    Qian, Zichen
    Zhao, Chihang
    Zhang, Bailing
    Lin, Shengmei
    Hua, Liru
    Li, Hao
    Ma, Xiaogang
    Ma, Teng
    Wang, Xinliang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5125 - 5137
  • [22] Classification of Pediatric Snoring Episodes Using Deep Convolutional Neural Networks
    Civaner, Ozan Firat
    Kamasak, Mustafa
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [23] Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks
    Eminaga, Okyaz
    Eminaga, Nurettin
    Semjonow, Axel
    Breil, Bernhard
    JCO CLINICAL CANCER INFORMATICS, 2018, 2 : 1 - 8
  • [24] Intelligent solid waste classification using deep convolutional neural networks
    A. Altikat
    A. Gulbe
    S. Altikat
    International Journal of Environmental Science and Technology, 2022, 19 : 1285 - 1292
  • [25] Detection and Classification of Human Stool Using Deep Convolutional Neural Networks
    Choy, Yin Pui
    Hu, Guoqing
    Chen, Jia
    IEEE ACCESS, 2021, 9 : 160485 - 160496
  • [26] Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks
    Zhou, Yu
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1935 - 1939
  • [27] Cell dynamic morphology classification using deep convolutional neural networks
    Li, Heng
    Pang, Fengqian
    Shi, Yonggang
    Liu, Zhiwen
    CYTOMETRY PART A, 2018, 93A (06) : 628 - 638
  • [28] Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
    Almutairi, Abdullah
    He, Pan
    Rangarajan, Anand
    Ranka, Sanjay
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (02) : 483 - 494
  • [29] A comparative study for glioma classification using deep convolutional neural networks
    Ozcan, Hakan
    Emiroglu, Bulent Gursel
    Sabuncuoglu, Hakan
    Ozdogan, Selcuk
    Soyer, Ahmet
    Saygi, Tahsin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (02) : 1550 - 1572
  • [30] Handwritten Music Symbol Classification Using Deep Convolutional Neural Networks
    Lee, Sangkuk
    Son, Sung Joon
    Oh, Jiyong
    Kwak, Nojun
    2016 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SECURITY (ICISS), 2014, : 99 - 103