Nanoparticles Ordering Classification Using Deep Convolutional Neural Networks

被引:0
|
作者
Amarif, Mabroukah [1 ]
Aejaal, Asmaah [2 ]
Ateeyah, Haleemah [2 ]
机构
[1] Sebha Univ, Fac Informat Technol, Sabha, Libya
[2] Sebha Univ, Fac Sci, Sabha, Libya
关键词
nanoparticles; ordering; classification; Deep Convolutional Neural Networks; PALLADIUM;
D O I
10.4028/p-5Rz56j
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Intelligent neural networks are used efficiently for image classification and recognition in various scientific areas. One of the most important of these areas is nanoscience. Researchers are currently seeking to apply various deep learning neural networks models for fastand intelligent prediction and recognition of nanostructures based on scanning electron microscopy images. Modelsof Deep Convolutional Neural Networks (DCNN) have reached a high accuracy ratein nanoparticles classification and recognition. In fact, the improvement of the classification accuracy strongly relies on the perfect fine-tuning of image data and model parameters and that is what this research has worked for. The aim of this paper is to present a model, specificallythe VGG16 convolutional neural network model, for high accurate nanoparticles ordering classification. The model has been used to classify the nanoparticles ordering using a typical dataset of electron microscopy images. In this research, an experiment has been carried out to achieve better accuracy rate in comparison to previously recorded accuracy rates. Data augmentation, modification techniques, and model tuning parameters are applied to excess the abilityof themodel for classifying the input image to ordered or non-ordered nanoparticles. Compared to the related works, the presented model has outperformed the pervious by achieving an accuracy rate of 97%. In this work, it has been observed that training iterations and balanced training data significantly improve the model performance and enhance the accuracy rate.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 50 条
  • [1] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [2] Flower classification using deep convolutional neural networks
    Hiary, Hazem
    Saadeh, Heba
    Saadeh, Maha
    Yaqub, Mohammad
    IET COMPUTER VISION, 2018, 12 (06) : 855 - 862
  • [3] Gas Classification Using Deep Convolutional Neural Networks
    Peng, Pai
    Zhao, Xiaojin
    Pan, Xiaofang
    Ye, Wenbin
    SENSORS, 2018, 18 (01)
  • [4] Classification of crystallization outcomes using deep convolutional neural networks
    Bruno, Andrew E.
    Charbonneau, Patrick
    Newman, Janet
    Snell, Edward H.
    So, David R.
    Vanhoucke, Vincent
    Watkins, Christopher J.
    Williams, Shawn
    Wilson, Julie
    PLOS ONE, 2018, 13 (06):
  • [5] Gender and Smile Classification using Deep Convolutional Neural Networks
    Zhang, Kaipeng
    Tan, Lianzhi
    Li, Zhifeng
    Qiao, Yu
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 739 - 743
  • [6] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262
  • [7] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [8] Water stress classification using Convolutional Deep Neural Networks
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 311 - 328
  • [9] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [10] Cystoscopy Image Classification Using Deep Convolutional Neural Networks
    Hashemi, Seyyed Mohammadreza
    Hassanpour, Hamid
    Kozegar, Ehsan
    Tan, Tao
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 193 - 205