Efficient numerical simulation of fractional-order Van der Pol impulsive system

被引:2
|
作者
Sharifi, Z. [1 ]
Moghaddam, B. P. [1 ]
Ilie, M. [2 ]
机构
[1] Lahijan BranchIslam Azad Univ, Dept Math, Lahijan, Iran
[2] Rasht BranchIslam Azad Univ, Dept Math, Rasht, Iran
来源
关键词
Fractional calculus; fractional Van der Pol impulsive system; finite difference technique; impulsive treatment effects; DIFFERENTIAL-EQUATIONS; MODELS;
D O I
10.1142/S0129183124500360
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an innovative and efficient method for solving the fractional-order Van der Pol impulsive system. In particular, the proposed scheme utilizes finite difference techniques for approximating fractional integrals, and its efficacy is compared to existing integration methods presented in the literature. Moreover, the proposed approach is applied to fractional impulsive systems, specifically the Fractional Van der Pol system with impulse behavior. The results demonstrate the effectiveness of the impulsive treatment effects for the system under consideration. In general, this study offers an insightful contribution to the field of fractional calculus, while providing a practical and efficient solution for solving impulsive systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method
    Li, Sujuan
    Niu, Jiangchuan
    Li, Xianghong
    CHINESE PHYSICS B, 2018, 27 (12)
  • [32] Impulsive Homoclinic Chaos in Van der Pol Jerk System
    丁玉梅
    张琪昌
    Transactions of Tianjin University, 2010, (06) : 457 - 460
  • [33] Impulsive homoclinic chaos in Van der Pol Jerk system
    Ding Y.
    Zhang Q.
    Transactions of Tianjin University, 2010, 16 (06) : 457 - 460
  • [34] Impulsive Homoclinic Chaos in Van der Pol Jerk System
    丁玉梅
    张琪昌
    Transactions of Tianjin University, 2010, 16 (06) : 457 - 460
  • [35] Simultaneously primary and super-harmonic resonance of a van der Pol oscillator with fractional-order derivative
    Cai, Chengcai
    Shen, Yongjun
    Wen, Shaofang
    CHAOS SOLITONS & FRACTALS, 2023, 176
  • [36] Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems
    KUMAR VISHAL
    SAURABH K AGRAWAL
    SUBIR DAS
    Pramana, 2016, 86 : 59 - 75
  • [37] Dynamic analysis of the fractional-order Duffing-Van der Pol oscillator and its application extension
    Li, Guohui
    Xie, Ruiting
    Yang, Hong
    NONLINEAR DYNAMICS, 2024, 112 (20) : 17709 - 17732
  • [38] Primary Resonance of van der Pol Oscillator under Fractional-Order Delayed Feedback and Forced Excitation
    Chen, Jufeng
    Li, Xianghong
    Tang, Jianhua
    Liu, Yafeng
    SHOCK AND VIBRATION, 2017, 2017
  • [39] Dynamical analysis of a Van Del Pol oscillator with fractional-order derivative
    Wang X.
    Shen Y.
    Zhang N.
    Shi Y.
    Wang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (20): : 91 - 96
  • [40] A fractional-order dependent collocation method with graded mesh for impulsive fractional-order system
    Xiaoting Liu
    Yong Zhang
    HongGuang Sun
    Zhilin Guo
    Computational Mechanics, 2022, 69 : 113 - 131