Efficient numerical simulation of fractional-order Van der Pol impulsive system

被引:2
|
作者
Sharifi, Z. [1 ]
Moghaddam, B. P. [1 ]
Ilie, M. [2 ]
机构
[1] Lahijan BranchIslam Azad Univ, Dept Math, Lahijan, Iran
[2] Rasht BranchIslam Azad Univ, Dept Math, Rasht, Iran
来源
关键词
Fractional calculus; fractional Van der Pol impulsive system; finite difference technique; impulsive treatment effects; DIFFERENTIAL-EQUATIONS; MODELS;
D O I
10.1142/S0129183124500360
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an innovative and efficient method for solving the fractional-order Van der Pol impulsive system. In particular, the proposed scheme utilizes finite difference techniques for approximating fractional integrals, and its efficacy is compared to existing integration methods presented in the literature. Moreover, the proposed approach is applied to fractional impulsive systems, specifically the Fractional Van der Pol system with impulse behavior. The results demonstrate the effectiveness of the impulsive treatment effects for the system under consideration. In general, this study offers an insightful contribution to the field of fractional calculus, while providing a practical and efficient solution for solving impulsive systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Chaotic Control in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 83 - 88
  • [12] Bifurcation Control of an Incommensurate Fractional-Order Van der Pol Oscillator
    Xiao Min
    Zheng Wei Xing
    Wan Youhong
    Fan Chunxia
    Jiang Guoping
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 2206 - 2211
  • [13] More Details on Analysis of Fractional-order Van der Pol Oscillator
    Tavazoei, Mohammad S.
    Haeri, Mohammad
    Attari, Mina
    Bolouki, Sadegh
    Siami, Milad
    JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (06) : 803 - 819
  • [14] Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative
    Shen, Yongjun
    Wei, Peng
    Sui, Chuanyi
    Yang, Shaopu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [15] Analysis on limit cycle of fractional-order van der Pol oscillator
    Shen, Yongjun
    Yang, Shaopu
    Sui, Chuanyi
    CHAOS SOLITONS & FRACTALS, 2014, 67 : 94 - 102
  • [16] Resonance Oscillation of Third-Order Forced van der Pol System With Fractional-Order Derivative
    Nguyen Van Khang
    Bui Thi Thuy
    Truong Quoc Chien
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (04):
  • [17] Super-harmonic resonance of fractional-order van der Pol oscillator
    Wei Peng
    Shen Yong-Jun
    Yang Shao-Pu
    ACTA PHYSICA SINICA, 2014, 63 (01)
  • [18] Numerical behavior of the variable-order fractional Van der Pol oscillator
    Ramroodi, N.
    Tehrani, H. Ahsani
    Skandari, M. H. Noori
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 74
  • [19] Bifurcation Control Of A Fractional-Order Van Der Pol Oscillator Based On The State Feedback
    Xiao, Min
    Jiang, Guoping
    Zheng, Wei Xing
    Yan, Senlin
    Wan, Youhong
    Fan, Chunxia
    ASIAN JOURNAL OF CONTROL, 2015, 17 (05) : 1756 - 1766
  • [20] Chaos in a generalized van der Pol system and in its fractional order system
    Ge, Zheng-Ming
    Hsu, Mao-Yuan
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1711 - 1745