Efficient numerical simulation of fractional-order Van der Pol impulsive system

被引:2
|
作者
Sharifi, Z. [1 ]
Moghaddam, B. P. [1 ]
Ilie, M. [2 ]
机构
[1] Lahijan BranchIslam Azad Univ, Dept Math, Lahijan, Iran
[2] Rasht BranchIslam Azad Univ, Dept Math, Rasht, Iran
来源
关键词
Fractional calculus; fractional Van der Pol impulsive system; finite difference technique; impulsive treatment effects; DIFFERENTIAL-EQUATIONS; MODELS;
D O I
10.1142/S0129183124500360
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an innovative and efficient method for solving the fractional-order Van der Pol impulsive system. In particular, the proposed scheme utilizes finite difference techniques for approximating fractional integrals, and its efficacy is compared to existing integration methods presented in the literature. Moreover, the proposed approach is applied to fractional impulsive systems, specifically the Fractional Van der Pol system with impulse behavior. The results demonstrate the effectiveness of the impulsive treatment effects for the system under consideration. In general, this study offers an insightful contribution to the field of fractional calculus, while providing a practical and efficient solution for solving impulsive systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A fractional-order dependent collocation method with graded mesh for impulsive fractional-order system
    Liu, Xiaoting
    Zhang, Yong
    Sun, HongGuang
    Guo, Zhilin
    COMPUTATIONAL MECHANICS, 2022, 69 (01) : 113 - 131
  • [42] Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu-van der Pol systems
    Vishal, Kumar
    Agrawal, Saurabh K.
    Das, Subir
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (01): : 59 - 75
  • [43] Dynamic response and vibration isolation effect of generalized fractional-order van der Pol-Duffing oscillator
    Tang J.
    Li X.
    Wang M.
    Shen Y.
    Li Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (01): : 10 - 18
  • [44] Super-harmonic and sub-harmonic simultaneous resonance of fractional-order van der Pol oscillator
    Jiang Y.
    Shen Y.-J.
    Wen S.-F.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (05): : 863 - 873
  • [45] Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback
    Jufeng Chen
    Yongjun Shen
    Xianghong Li
    Shaopu Yang
    Shaofang Wen
    Indian Journal of Physics, 2020, 94 : 1615 - 1624
  • [46] Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit
    Matouk, A. E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 975 - 986
  • [47] Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback
    Chen, Jufeng
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    Wen, Shaofang
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (10) : 1615 - 1624
  • [48] Mixed-mode oscillations and extreme events in fractional-order Bonhoeffer-van der Pol oscillator
    Wei, Zhouchao
    Kumarasamy, Suresh
    Ramasamy, Mohanasubha
    Rajagopal, Karthikeyan
    Qian, Youhua
    CHAOS, 2023, 33 (09)
  • [49] Fractional van der Pol equations
    Mickens, RE
    JOURNAL OF SOUND AND VIBRATION, 2003, 259 (02) : 457 - 460
  • [50] Analysis of fractional order Bonhoeffer-van der Pol oscillator
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (2-3) : 418 - 424