Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems

被引:1
|
作者
KUMAR VISHAL
SAURABH K AGRAWAL
SUBIR DAS
机构
[1] NIIT University,Department of Mathematics and Basic Science
[2] Bharati Vidyapeeth’s College of Engineering,Department of Applied Sciences
[3] Indian Institute of Technology (BHU),Department of Mathematical Sciences
来源
Pramana | 2016年 / 86卷
关键词
Chaos; fractional derivative; Mathieu–van der Pol system; hyperchaos control; feedback control; modified adaptive control methods.; 05.45.−a; 05.45.Xt; 05.45.Pq; 05.45.Gg;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have discussed the local stability of the Mathieu–van der Pol hyperchaotic system with the fractional-order derivative. The fractional Routh–Hurwitz stability conditions were provided and were used to discuss the stability. Feedback control method was used to control chaos in the Mathieu–van der Pol system with fractional-order derivative and after controlling the chaotic behaviour of the system the synchronization between the fractional-order hyperchaotic Mathieu–van der Pol system and controlled system was introduced. In this study, modified adaptive control methods with uncertain parameters at various equilibrium points were used. Also the analysis of control time with respect to different fractional-order derivatives is the key feature of this paper. Numerical simulation results achieved using Adams–Boshforth–Moulton method show that the method is effective and reliable.
引用
收藏
页码:59 / 75
页数:16
相关论文
共 50 条
  • [1] Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu-van der Pol systems
    Vishal, Kumar
    Agrawal, Saurabh K.
    Das, Subir
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (01): : 59 - 75
  • [2] Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms
    Wen, Shaofang
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 84 : 130 - 138
  • [3] Bifurcation Control of an Incommensurate Fractional-Order Van der Pol Oscillator
    Xiao Min
    Zheng Wei Xing
    Wan Youhong
    Fan Chunxia
    Jiang Guoping
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 2206 - 2211
  • [4] Chaotic Control in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 83 - 88
  • [5] Chaos generalized synchronization of coupled Mathieu-Van der Pol and coupled Duffing-Van der Pol systems using fractional order-derivative
    Giresse, Tene Alain
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 88 - 100
  • [6] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    Bouzeriba, A.
    Boulkroune, A.
    Bouden, T.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (05) : 893 - 908
  • [7] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    A. Bouzeriba
    A. Boulkroune
    T. Bouden
    International Journal of Machine Learning and Cybernetics, 2016, 7 : 893 - 908
  • [8] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [9] An Adaptive Tracking Control of Fractional-Order Chaotic Systems with Uncertain System Parameter
    Zhou, Ping
    Ding, Rui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [10] Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit
    Matouk, A. E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 975 - 986