An adaptive stabilized finite element method for the Stokes-Darcy coupled problem

被引:0
|
作者
Araya, Rodolfo [1 ,2 ]
Carcamo, Cristian [5 ]
Poza, Abner H. [3 ,4 ]
Vino, Eduardo [3 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, CI MA 2, Casilla 160-C, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[4] Grp Invest Anal Numer & Calculo Cientif, GIANuC 2, Concepcion, Chile
[5] Leibniz Inst Forsch Verbund Berlin EV WIAS, Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
关键词
Coupled Stokes-Darcy equation; Stabilized finite element method; A priori error analysis; A posteriori error analysis; FLUID-FLOW; BOUNDARY-CONDITIONS; FORMULATIONS;
D O I
10.1016/j.cam.2024.115753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Stokes-Darcy coupled problem, which models a fluid that flows from a free medium into a porous medium, we introduce and analyze an adaptive stabilized finite element method using Lagrange equal order element to approximate the velocity and pressure of the fluid. The interface conditions between the free medium and the porous medium are given by mass conservation, the balance of normal forces, and the Beavers-Joseph-Saffman conditions. We prove the well-posedness of the discrete problem and present a convergence analysis with optimal error estimates in natural norms. Next, we introduce and analyze a residual -based a posteriori error estimator for the stabilized scheme. Finally, we present numerical examples to demonstrate the performance and effectiveness of our scheme.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] A stabilized finite element method for the Darcy problem on surfaces
    Hansbo, Peter
    Larson, Mats G.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1274 - 1299
  • [42] A stabilized multiple time step method for coupled Stokes-Darcy flows and transport model
    Zhang, Jingyuan
    Zhang, Ruikun
    Lin, Xue
    AIMS MATHEMATICS, 2023, 8 (09): : 21406 - 21438
  • [43] Domain decomposition method for the fully-mixed Stokes-Darcy coupled problem
    Sun, Yizhong
    Sun, Weiwei
    Zheng, Haibiao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 374
  • [44] A lowest-order staggered DG method for the coupled Stokes-Darcy problem
    Zhao, Lina
    Park, Eun-Jae
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2871 - 2897
  • [45] A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem
    Discacciati, Marco
    Oyarzua, Ricardo
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 571 - 606
  • [46] Robust preconditioning for coupled Stokes-Darcy problems with the Darcy problem in primal form
    Holter, Karl Erik
    Kuchta, Miroslav
    Mardal, Kent-Andre
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 53 - 66
  • [47] TWO-GRID FINITE ELEMENT METHOD FOR THE STABILIZATION OF MIXED STOKES-DARCY MODEL
    Yu, Jiaping
    Zheng, Haibiao
    Shi, Feng
    Zhao, Ren
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01): : 387 - 402
  • [48] Convergence of a Family of Galerkin Discretizations for the Stokes-Darcy Coupled Problem
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sayas, Francisco-Javier
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) : 721 - 748
  • [49] Discontinuous finite volume methods for the stationary Stokes-Darcy problem
    Wang, Gang
    He, Yinnian
    Li, Rui
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (05) : 395 - 418
  • [50] A Mortar Method Using Nonconforming and Mixed Finite Elements for the Coupled Stokes-Darcy Model
    Huang, Peiqi
    Chen, Jinru
    Cai, Mingchao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (03) : 596 - 620