An adaptive stabilized finite element method for the Stokes-Darcy coupled problem

被引:0
|
作者
Araya, Rodolfo [1 ,2 ]
Carcamo, Cristian [5 ]
Poza, Abner H. [3 ,4 ]
Vino, Eduardo [3 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, CI MA 2, Casilla 160-C, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[4] Grp Invest Anal Numer & Calculo Cientif, GIANuC 2, Concepcion, Chile
[5] Leibniz Inst Forsch Verbund Berlin EV WIAS, Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
关键词
Coupled Stokes-Darcy equation; Stabilized finite element method; A priori error analysis; A posteriori error analysis; FLUID-FLOW; BOUNDARY-CONDITIONS; FORMULATIONS;
D O I
10.1016/j.cam.2024.115753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Stokes-Darcy coupled problem, which models a fluid that flows from a free medium into a porous medium, we introduce and analyze an adaptive stabilized finite element method using Lagrange equal order element to approximate the velocity and pressure of the fluid. The interface conditions between the free medium and the porous medium are given by mass conservation, the balance of normal forces, and the Beavers-Joseph-Saffman conditions. We prove the well-posedness of the discrete problem and present a convergence analysis with optimal error estimates in natural norms. Next, we introduce and analyze a residual -based a posteriori error estimator for the stabilized scheme. Finally, we present numerical examples to demonstrate the performance and effectiveness of our scheme.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem
    Marco Discacciati
    Ricardo Oyarzúa
    Numerische Mathematik, 2017, 135 : 571 - 606
  • [32] An extended nonconforming finite element method for the coupled Darcy-Stokes problem
    Cao, Pei
    Chen, Jinru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [33] A stabilized finite element method for the Stokes-Temperature coupled problem
    Araya, Rodolfo
    Carcamo, Cristian
    Poza, Abner H.
    APPLIED NUMERICAL MATHEMATICS, 2023, 187 : 24 - 49
  • [34] A virtual element method for the coupled Stokes-Darcy problem with the Beaver-Joseph-Saffman interface condition
    Liu, Xin
    Li, Rui
    Chen, Zhangxin
    CALCOLO, 2019, 56 (04)
  • [35] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    冯民富
    祁瑞生
    朱瑞
    鞠炳焘
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (03) : 393 - 404
  • [36] A modified local and parallel finite element method for the mixed Stokes-Darcy model
    Du, Guangzhi
    Hou, Yanten
    Zuo, Liyun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1129 - 1145
  • [37] A lowest-order staggered DG method for the coupled Stokes-Darcy problem
    Zhao L.
    Park E.-J.
    IMA Journal of Numerical Analysis, 2021, 40 (04) : 2871 - 2897
  • [38] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Feng, Min-fu
    Qi, Rui-sheng
    Zhu, Rui
    Ju, Bing-tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (03) : 393 - 404
  • [39] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Min-fu Feng
    Rui-sheng Qi
    Rui Zhu
    Bing-tao Ju
    Applied Mathematics and Mechanics, 2010, 31 : 393 - 404
  • [40] Mortar multiscale finite element methods for Stokes-Darcy flows
    Girault, Vivette
    Vassilev, Danail
    Yotov, Ivan
    NUMERISCHE MATHEMATIK, 2014, 127 (01) : 93 - 165