An adaptive stabilized finite element method for the Stokes-Darcy coupled problem

被引:0
|
作者
Araya, Rodolfo [1 ,2 ]
Carcamo, Cristian [5 ]
Poza, Abner H. [3 ,4 ]
Vino, Eduardo [3 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, CI MA 2, Casilla 160-C, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[4] Grp Invest Anal Numer & Calculo Cientif, GIANuC 2, Concepcion, Chile
[5] Leibniz Inst Forsch Verbund Berlin EV WIAS, Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
关键词
Coupled Stokes-Darcy equation; Stabilized finite element method; A priori error analysis; A posteriori error analysis; FLUID-FLOW; BOUNDARY-CONDITIONS; FORMULATIONS;
D O I
10.1016/j.cam.2024.115753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Stokes-Darcy coupled problem, which models a fluid that flows from a free medium into a porous medium, we introduce and analyze an adaptive stabilized finite element method using Lagrange equal order element to approximate the velocity and pressure of the fluid. The interface conditions between the free medium and the porous medium are given by mass conservation, the balance of normal forces, and the Beavers-Joseph-Saffman conditions. We prove the well-posedness of the discrete problem and present a convergence analysis with optimal error estimates in natural norms. Next, we introduce and analyze a residual -based a posteriori error estimator for the stabilized scheme. Finally, we present numerical examples to demonstrate the performance and effectiveness of our scheme.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] A Stabilized Finite Volume Element Method for Stationary Stokes-Darcy Equations Using the Lowest Order
    Wu, Yanyun
    Mei, Liquan
    Qiu, Meilan
    Chu, Yuchuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (08)
  • [22] Weak Galerkin and Continuous Galerkin Coupled Finite Element Methods for the Stokes-Darcy Interface Problem
    Peng, Hui
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 1147 - 1175
  • [23] Analysis of a diffuse interface method for the Stokes-Darcy coupled problem
    Bukac, Martina
    Muha, Boris
    Salgado, Abner J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (05) : 2623 - 2658
  • [24] A Crank-Nicolson discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem
    Li, Rui
    Gao, Yali
    Yan, Wenjing
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 86 - 112
  • [25] A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport
    Rui, Hongxing
    Zhang, Jingyuan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 315 : 169 - 189
  • [26] Nitsche's type stabilized finite element method for the fully mixed Stokes-Darcy problem with Beavers-Joseph conditions
    Yu, Jiaping
    Sun, Yizhong
    Shi, Feng
    Zheng, Haibiao
    APPLIED MATHEMATICS LETTERS, 2020, 110
  • [27] PERTURBATION SOLUTION OF THE COUPLED STOKES-DARCY PROBLEM
    Khabthani, Sondes
    Elasmi, Lassaad
    Feuillebois, Francois
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (04): : 971 - 990
  • [28] Coupled and Decoupled Stabilized Finite Element Methods for the Stokes-Darcy-Transport Problem
    Wang, Yongshuai
    Shi, Feng
    You, Zemin
    Zheng, Haibiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)
  • [29] An adaptive stabilized finite element method for the generalized Stokes problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 457 - 479
  • [30] A two-grid decoupled penalty finite element method for the stationary Stokes-Darcy problem
    Han, Wei-Wei
    Jiang, Yao-Lin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 136