An adaptive stabilized finite element method for the Stokes-Darcy coupled problem

被引:0
|
作者
Araya, Rodolfo [1 ,2 ]
Carcamo, Cristian [5 ]
Poza, Abner H. [3 ,4 ]
Vino, Eduardo [3 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, CI MA 2, Casilla 160-C, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[4] Grp Invest Anal Numer & Calculo Cientif, GIANuC 2, Concepcion, Chile
[5] Leibniz Inst Forsch Verbund Berlin EV WIAS, Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
关键词
Coupled Stokes-Darcy equation; Stabilized finite element method; A priori error analysis; A posteriori error analysis; FLUID-FLOW; BOUNDARY-CONDITIONS; FORMULATIONS;
D O I
10.1016/j.cam.2024.115753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Stokes-Darcy coupled problem, which models a fluid that flows from a free medium into a porous medium, we introduce and analyze an adaptive stabilized finite element method using Lagrange equal order element to approximate the velocity and pressure of the fluid. The interface conditions between the free medium and the porous medium are given by mass conservation, the balance of normal forces, and the Beavers-Joseph-Saffman conditions. We prove the well-posedness of the discrete problem and present a convergence analysis with optimal error estimates in natural norms. Next, we introduce and analyze a residual -based a posteriori error estimator for the stabilized scheme. Finally, we present numerical examples to demonstrate the performance and effectiveness of our scheme.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] A weak Galerkin-mixed finite element method for the Stokes-Darcy problem
    Hui Peng
    Qilong Zhai
    Ran Zhang
    Shangyou Zhang
    Science China Mathematics, 2021, 64 (10) : 2357 - 2380
  • [12] ANALYSIS OF FULLY-MIXED FINITE ELEMENT METHODS FOR THE STOKES-DARCY COUPLED PROBLEM
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sayas, Francisco-Javier
    MATHEMATICS OF COMPUTATION, 2011, 80 (276) : 1911 - 1948
  • [13] A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy
    Boon, Wietse M.
    Glaeser, Dennis
    Helmig, Rainer
    Weishaupt, Kilian
    Yotov, Ivan
    COMPUTATIONAL GEOSCIENCES, 2024, 28 (03) : 413 - 430
  • [14] Strong coupling of finite element methods for the Stokes-Darcy problem
    Marquez, Antonio
    Meddahi, Salim
    Sayas, Francisco-Javier
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 969 - 988
  • [15] A weak Galerkin-mixed finite element method for the Stokes-Darcy problem
    Hui Peng
    Qilong Zhai
    Ran Zhang
    Shangyou Zhang
    Science China Mathematics, 2021, 64 : 2357 - 2380
  • [16] Methods for the coupled Stokes-Darcy problem
    Feuillebois, F.
    Khabthani, S.
    Elasmi, L.
    Sellier, A.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 14 - +
  • [17] A weak Galerkin-mixed finite element method for the Stokes-Darcy problem
    Peng, Hui
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2357 - 2380
  • [18] APPROXIMATIONS BY MINI MIXED FINITE ELEMENT FOR THE STOKES-DARCY COUPLED PROBLEM ON CURVED DOMAINS
    Gabriela Armentano, Maria
    Lorena Stockdale, Maria
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (02) : 203 - 234
  • [19] A stabilized finite volume method for the evolutionary Stokes-Darcy system
    Li, Yi
    Hou, Yanren
    Li, Rui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) : 596 - 613
  • [20] Stabilized finite element method for the stationary mixed Stokes–Darcy problem
    Jiaping Yu
    Md. Abdullah Al Mahbub
    Feng Shi
    Haibiao Zheng
    Advances in Difference Equations, 2018