An adaptive stabilized finite element method for the Stokes-Darcy coupled problem

被引:0
|
作者
Araya, Rodolfo [1 ,2 ]
Carcamo, Cristian [5 ]
Poza, Abner H. [3 ,4 ]
Vino, Eduardo [3 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, CI MA 2, Casilla 160-C, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[4] Grp Invest Anal Numer & Calculo Cientif, GIANuC 2, Concepcion, Chile
[5] Leibniz Inst Forsch Verbund Berlin EV WIAS, Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
关键词
Coupled Stokes-Darcy equation; Stabilized finite element method; A priori error analysis; A posteriori error analysis; FLUID-FLOW; BOUNDARY-CONDITIONS; FORMULATIONS;
D O I
10.1016/j.cam.2024.115753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Stokes-Darcy coupled problem, which models a fluid that flows from a free medium into a porous medium, we introduce and analyze an adaptive stabilized finite element method using Lagrange equal order element to approximate the velocity and pressure of the fluid. The interface conditions between the free medium and the porous medium are given by mass conservation, the balance of normal forces, and the Beavers-Joseph-Saffman conditions. We prove the well-posedness of the discrete problem and present a convergence analysis with optimal error estimates in natural norms. Next, we introduce and analyze a residual -based a posteriori error estimator for the stabilized scheme. Finally, we present numerical examples to demonstrate the performance and effectiveness of our scheme.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A stabilized finite volume element method for a coupled Stokes-Darcy problem
    Li, Rui
    Li, Jian
    He, Xiaoming
    Chen, Zhangxin
    APPLIED NUMERICAL MATHEMATICS, 2018, 133 : 2 - 24
  • [2] Stabilized finite element method for the stationary mixed Stokes-Darcy problem
    Yu, Jiaping
    Al Mahbub, Md Abdullah
    Shi, Feng
    Zheng, Haibiao
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] A weak Galerkin finite element method for a coupled Stokes-Darcy problem
    Li, Rui
    Li, Jian
    Liu, Xin
    Chen, Zhangxin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) : 1352 - 1373
  • [4] A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem
    Li, Rui
    Li, Jian
    Chen, Zhangxin
    Gao, Yali
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 92 - 104
  • [5] A pressure-robust mixed finite element method for the coupled Stokes-Darcy problem
    Lv, Deyong
    Rui, Hongxing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [6] A weak Galerkin finite element method for a coupled Stokes-Darcy problem on general meshes
    Li, Rui
    Gao, Yali
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 334 : 111 - 127
  • [7] A unified mixed finite element approximations of the Stokes-Darcy coupled problem
    Gabriela Armentano, Maria
    Lorena Stockdale, Maria
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) : 2568 - 2584
  • [8] Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes-Darcy Problem
    Li, Rui
    Gao, Yali
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) : 693 - 727
  • [9] Finite Element Method for the Stokes-Darcy Problem with a New Boundary Condition
    El Moutea, O.
    El Amri, H.
    El Akkad, A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2020, 13 (02) : 136 - 151
  • [10] A New Local and Parallel Finite Element Method for the Coupled Stokes-Darcy Model
    Du, Guangzhi
    Zuo, Liyun
    Zhang, Yuhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)