Uncertainty quantification for random domains using periodic random variables

被引:2
|
作者
Hakula, Harri [1 ]
Harbrecht, Helmut [2 ]
Kaarnioja, Vesa [3 ]
Kuo, Frances Y. [4 ]
Sloan, Ian H. [4 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Sch Sci, POB 11100, Aalto 00076, Finland
[2] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Free Univ Berlin, Fachbereich Math & Informat, Arnimallee 6, D-14195 Berlin, Germany
[4] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
65D30; 65D32; 35R60; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00211-023-01392-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja et al. (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.
引用
收藏
页码:273 / 317
页数:45
相关论文
共 50 条
  • [21] UNCERTAINTY QUANTIFICATION FOR PDEs WITH ANISOTROPIC RANDOM DIFFUSION
    Harbrecht, H.
    Peters, M. D.
    Schmidlin, M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 1002 - 1023
  • [22] Uncertainty quantification for ecological models with random parameters
    Reimer, Jody R.
    Adler, Frederick R.
    Golden, Kenneth M.
    Narayan, Akil
    ECOLOGY LETTERS, 2022, 25 (10) : 2232 - 2244
  • [23] Uncertainty Quantification for Markov Random Fields\ast
    Birmpa, Panagiota
    Katsoulakis, Markos A.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04): : 1457 - 1498
  • [24] RANDOM PREDICTOR MODELS FOR RIGOROUS UNCERTAINTY QUANTIFICATION
    Crespo, Luis G.
    Kenny, Sean P.
    Giesy, Daniel P.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2015, 5 (05) : 469 - 489
  • [25] Learning Random Feature Dynamics for Uncertainty Quantification
    Agudelo-Espana, Diego
    Nemmour, Yassine
    Schoelkopf, Bernhard
    Zhu, Jia-Jie
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4937 - 4944
  • [26] Uncertainty Quantification of LWR Core Characteristics Using Random Sampling Method
    Yamamoto, Akio
    Kinoshita, Kuniharu
    Watanabe, Tomoaki
    Endo, Tomohiro
    Kodama, Yasuhiro
    Ohoka, Yasunori
    Ushio, Tadashi
    Nagano, Hiroaki
    NUCLEAR SCIENCE AND ENGINEERING, 2015, 181 (02) : 160 - 174
  • [27] DOMAINS OF ATTRACTION FOR RECIPROCALS OF POWERS OF RANDOM-VARIABLES
    SHAPIRO, JM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 29 (04) : 734 - 739
  • [28] Uncertainty estimation in measurement of micromechanical properties using random-fuzzy variables
    Zhu, Q
    Jiang, ZD
    Zhao, ZX
    Wang, HR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03):
  • [30] REMARKS ON PERIODIC BEHAVIOR IN TIME OF SUMS OF RANDOM VARIABLES
    WILLIAMS.JA
    RINEHART, GS
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (04): : 690 - &