Uncertainty quantification for random domains using periodic random variables

被引:2
|
作者
Hakula, Harri [1 ]
Harbrecht, Helmut [2 ]
Kaarnioja, Vesa [3 ]
Kuo, Frances Y. [4 ]
Sloan, Ian H. [4 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Sch Sci, POB 11100, Aalto 00076, Finland
[2] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Free Univ Berlin, Fachbereich Math & Informat, Arnimallee 6, D-14195 Berlin, Germany
[4] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
65D30; 65D32; 35R60; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00211-023-01392-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja et al. (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.
引用
收藏
页码:273 / 317
页数:45
相关论文
共 50 条
  • [31] Subsurface Source Zone Characterization and Uncertainty Quantification Using Discriminative Random Fields
    Arshadi, Masoud
    Kaluza, M. Clara De Paolis
    Miller, Eric L.
    Abriola, Linda M.
    WATER RESOURCES RESEARCH, 2020, 56 (03)
  • [32] UNCERTAINTY QUANTIFICATION IN BRAIN TUMOR SEGMENTATION USING CRFs AND RANDOM PERTURBATION MODELS
    Alberts, Esther
    Rempfler, Markus
    Alber, Georgina
    Huber, Thomas
    Kirschke, Jan
    Zimmer, Claus
    Menze, Bjoern H.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 428 - 431
  • [33] Uncertainty quantification in logistic regression using random fuzzy sets and belief functions
    Denœux, Thierry
    International Journal of Approximate Reasoning, 1600, 168
  • [34] Correlated Random Variables and Measurement Uncertainty in Reverberation Chambers
    Carobbi, Carlo
    Serra, Ramiro
    2021 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL & POWER INTEGRITY, AND EMC EUROPE (EMC+SIPI AND EMC EUROPE), 2021, : 361 - 361
  • [36] Reduction of Random Variables in EMC Uncertainty Simulation Model
    Bai, Jinjun
    Wan, Yixuan
    Li, Ming
    Zhang, Gang
    He, Xin
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2022, 37 (09): : 941 - 947
  • [37] Uncertainty quantification for random Hamiltonian systems by using polynomial expansions and geometric integrators
    Jornet, Marc
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [38] Uncertainty quantification in logistic regression using random fuzzy sets and belief functions
    Denoeux, Thierry
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 368
  • [39] Uncertainty quantification in logistic regression using random fuzzy sets and belief functions
    Denoeux, Thierry
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 168
  • [40] UNCERTAINTY QUANTIFICATION ON SIMULATION ANALYSIS DRIVEN BY RANDOM FORESTS
    Meisami, Amirhossein
    Van Oyen, Mark P.
    Lam, Henry
    2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 3266 - 3274