Uncertainty quantification for random domains using periodic random variables

被引:2
|
作者
Hakula, Harri [1 ]
Harbrecht, Helmut [2 ]
Kaarnioja, Vesa [3 ]
Kuo, Frances Y. [4 ]
Sloan, Ian H. [4 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Sch Sci, POB 11100, Aalto 00076, Finland
[2] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Free Univ Berlin, Fachbereich Math & Informat, Arnimallee 6, D-14195 Berlin, Germany
[4] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
65D30; 65D32; 35R60; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00211-023-01392-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja et al. (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.
引用
收藏
页码:273 / 317
页数:45
相关论文
共 50 条
  • [41] Uncertainty quantification of tunnel seismic deformations in random soils
    Sun, Qiangqiang
    Dias, Daniel
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 128
  • [42] Uncertainty Quantification of Bifurcations in Random Ordinary Differential Equations
    Kuehn, Christian
    Lux, Kerstin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (04): : 2295 - 2334
  • [43] Uncertainty quantification of MEMS devices with correlated random parameters
    Lin-Feng Zhao
    Zai-Fa Zhou
    Yi-Qun Song
    Mu-Zi Meng
    Qing-An Huang
    Microsystem Technologies, 2020, 26 : 1689 - 1696
  • [44] Uncertainty quantification of MEMS devices with correlated random parameters
    Zhao, Lin-Feng
    Zhou, Zai-Fa
    Song, Yi-Qun
    Meng, Mu-Zi
    Huang, Qing-An
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (05): : 1689 - 1696
  • [45] DISTRIBUTION FUNCTIONS OF RANDOM VARIABLES IN ARITHMETIC DOMAINS MODULO ALPHA
    SCHEINOK, P
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (02): : 128 - +
  • [46] On random variables stipulated by sums of independent random variables
    Gnedenko, B.V.
    Kudlaev, E.M.
    Vestnik Moskovskogo Universiteta, Seriya 1 (Matematika Mekhanika), (05): : 23 - 30
  • [47] Computation of structural system reliability with hybrid uncertainty of fuzzy variables and random variables
    Zhao, Yan
    Zhang, Xinfeng
    Shi, Huli
    Jixie Qiandu/Journal of Mechanical Strength, 2008, 30 (01): : 72 - 77
  • [48] Experimental analysis and uncertainty quantification using random sampling technique for ADS experiments at KUCA
    Endo, Tomohiro
    Chiba, Go
    van Rooijen, Willem Frederik Geert
    Yamanaka, Masao
    Pyeon, Cheol Ho
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2018, 55 (04) : 450 - 459
  • [49] Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields
    Croci, Matteo
    Vinje, Vegard
    Rognes, Marie E.
    FLUIDS AND BARRIERS OF THE CNS, 2019, 16 (01)
  • [50] Uncertainty quantification for systems with random initial conditions using Wiener-Hermite expansions
    Rubinstein, R
    Choudhari, M
    STUDIES IN APPLIED MATHEMATICS, 2005, 114 (02) : 167 - 188