Uncertainty quantification for ecological models with random parameters

被引:9
|
作者
Reimer, Jody R. [1 ,2 ]
Adler, Frederick R. [1 ,2 ]
Golden, Kenneth M. [1 ]
Narayan, Akil [1 ,3 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sch Biol Sci, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
aleatory uncertainty; bloom dynamics; epistemic uncertainty; global sensitivity; Jensen's inequality; polynomial chaos; random parameters; sea ice algae; uncertainty quantification; SEA-ICE ALGAE; HORIZONTAL PATCHINESS; SPATIAL VARIABILITY; POLYNOMIAL CHAOS; EPIDEMIC MODELS; BIOMASS; GROWTH; SNOW; LIGHT;
D O I
10.1111/ele.14095
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters. Modelling key parameters in the algal bloom model as random variables changes the timing, intensity and overall productivity of the modelled bloom. The computational efficiency of polynomial chaos methods provides a promising avenue for the broader inclusion of parametric uncertainty in ecological models, leading to improved model predictions and synthesis between models and data.
引用
收藏
页码:2232 / 2244
页数:13
相关论文
共 50 条
  • [1] RANDOM PREDICTOR MODELS FOR RIGOROUS UNCERTAINTY QUANTIFICATION
    Crespo, Luis G.
    Kenny, Sean P.
    Giesy, Daniel P.
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2015, 5 (05) : 469 - 489
  • [2] Uncertainty quantification of MEMS devices with correlated random parameters
    Lin-Feng Zhao
    Zai-Fa Zhou
    Yi-Qun Song
    Mu-Zi Meng
    Qing-An Huang
    [J]. Microsystem Technologies, 2020, 26 : 1689 - 1696
  • [3] Uncertainty quantification of MEMS devices with correlated random parameters
    Zhao, Lin-Feng
    Zhou, Zai-Fa
    Song, Yi-Qun
    Meng, Mu-Zi
    Huang, Qing-An
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (05): : 1689 - 1696
  • [4] Multifidelity uncertainty quantification with models based on dissimilar parameters
    Zeng, Xiaoshu
    Geraci, Gianluca
    Eldred, Michael S.
    Jakeman, John D.
    Gorodetsky, Alex A.
    Ghanem, Roger
    [J]. Computer Methods in Applied Mechanics and Engineering, 2023, 415
  • [5] Uncertainty Quantification Spectral Technique for the Stochastic Point Reactor with Random Parameters
    Alaskary, Safa
    El-Beltagy, Mohamed
    [J]. ENERGIES, 2020, 13 (06)
  • [6] Uncertainty Quantification and Sensitivity Analysis of Closure Parameters of Transition Models
    Song, Ziming
    Liu, Zaijie
    Yan, Chao
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2023, 36 (01)
  • [7] Uncertainty in ecological models
    Lek, Sovan
    [J]. ECOLOGICAL MODELLING, 2007, 207 (01) : 1 - 2
  • [8] Uncertainty quantification for hybrid random logistic models with harvesting via density functions
    Cortes, J-C
    Moscardo-Garcia, A.
    Villanueva, R-J
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [9] UNCERTAINTY QUANTIFICATION IN BRAIN TUMOR SEGMENTATION USING CRFs AND RANDOM PERTURBATION MODELS
    Alberts, Esther
    Rempfler, Markus
    Alber, Georgina
    Huber, Thomas
    Kirschke, Jan
    Zimmer, Claus
    Menze, Bjoern H.
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 428 - 431
  • [10] Application and Comparison of Uncertainty Quantification Methods for Railway Vehicle Dynamics with Random Mechanical Parameters
    Zhang, Dawei
    Xu, Peijuan
    Bigoni, Daniele
    [J]. MECHANIKA, 2019, 25 (06): : 455 - 462