Uncertainty quantification for ecological models with random parameters

被引:9
|
作者
Reimer, Jody R. [1 ,2 ]
Adler, Frederick R. [1 ,2 ]
Golden, Kenneth M. [1 ]
Narayan, Akil [1 ,3 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sch Biol Sci, Salt Lake City, UT 84112 USA
[3] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
aleatory uncertainty; bloom dynamics; epistemic uncertainty; global sensitivity; Jensen's inequality; polynomial chaos; random parameters; sea ice algae; uncertainty quantification; SEA-ICE ALGAE; HORIZONTAL PATCHINESS; SPATIAL VARIABILITY; POLYNOMIAL CHAOS; EPIDEMIC MODELS; BIOMASS; GROWTH; SNOW; LIGHT;
D O I
10.1111/ele.14095
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters. Modelling key parameters in the algal bloom model as random variables changes the timing, intensity and overall productivity of the modelled bloom. The computational efficiency of polynomial chaos methods provides a promising avenue for the broader inclusion of parametric uncertainty in ecological models, leading to improved model predictions and synthesis between models and data.
引用
收藏
页码:2232 / 2244
页数:13
相关论文
共 50 条
  • [21] UNCERTAINTY QUANTIFICATION FOR PDEs WITH ANISOTROPIC RANDOM DIFFUSION
    Harbrecht, H.
    Peters, M. D.
    Schmidlin, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 1002 - 1023
  • [22] Uncertainty quantification for functional dependent random variables
    Nanty, Simon
    Helbert, Celine
    Marrel, Amandine
    Perot, Nadia
    Prieur, Clementine
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (02) : 559 - 583
  • [23] Learning Random Feature Dynamics for Uncertainty Quantification
    Agudelo-Espana, Diego
    Nemmour, Yassine
    Schoelkopf, Bernhard
    Zhu, Jia-Jie
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4937 - 4944
  • [24] Uncertainty quantification for functional dependent random variables
    Simon Nanty
    Céline Helbert
    Amandine Marrel
    Nadia Pérot
    Clémentine Prieur
    [J]. Computational Statistics, 2017, 32 : 559 - 583
  • [25] Uncertainty Quantification for Markov Random Fields\ast
    Birmpa, Panagiota
    Katsoulakis, Markos A.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04): : 1457 - 1498
  • [26] UNCERTAINTY QUANTIFICATION USING PERIODIC RANDOM VARIABLES
    Kaarnioja, V.
    Kuo, F. Y.
    Sloan, I. H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) : 1068 - 1091
  • [27] Efficient Uncertainty Quantification of FDTD based Microwave Circuit Models with Multiple Design Parameters
    Zhang, Xingqi
    Liu, Kae-An
    Sarris, Costas D.
    [J]. 2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 121 - 123
  • [28] Uncertainty quantification for model parameters and hidden state variables in Bayesian dynamic linear models
    Luong Ha Nguyen
    Gaudot, Ianis
    Goulet, James-A.
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (03):
  • [29] UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS OF MATERIAL PARAMETERS IN CRYSTAL PLASTICITY FINITE ELEMENT MODELS
    Khadyko, Mikhail
    Sturdy, Jacob
    Dumoulin, Stephane
    Hellevik, Leif Rune
    Hopperstad, Odd Sture
    [J]. JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2018, 13 (03) : 379 - 400
  • [30] Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of Parameters
    Trinchero, Riccardo
    Larbi, Mourad
    Torun, Hakki M.
    Canavero, Flavio G.
    Swaminathan, Madhavan
    [J]. IEEE ACCESS, 2019, 7 : 4056 - 4066