Efficient Uncertainty Quantification of FDTD based Microwave Circuit Models with Multiple Design Parameters

被引:2
|
作者
Zhang, Xingqi [1 ]
Liu, Kae-An [1 ]
Sarris, Costas D. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
关键词
finite-difference time-domain; microwave circuit modeling; orthogonal matching pursuit; polynomial chaos expansion; uncertainty quantification;
D O I
10.1109/mwsym.2019.8701065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The polynomial chaos expansion (PCE) method has emerged as a promising uncertainty quantification technique compared to the commonly used yet computationally inefficient Monte Carlo method. However, PCE-based methods generally suffer from a "curse of dimensionality", where the computational cost increases rapidly with the number of random variables included in the analysis. This paper applies an orthogonal matching pursuit algorithm to mitigate the computational cost of PCE and facilitate the uncertainty analysis in finite-difference time-domain (FDTD) models of microwave circuits. The performance is demonstrated by modeling a cascaded stub filter with 13 geometric and material parameters, where a considerable computational advantage is achieved.
引用
收藏
页码:121 / 123
页数:3
相关论文
共 50 条
  • [1] Efficient Sensitivity Analysis of Microwave Structures with Multiple Design Parameters in FDTD
    Liu, Kae-An
    Sarris, Costas D.
    [J]. 2018 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM - IMS, 2018, : 194 - 196
  • [2] Efficient Analysis of Parameter Uncertainty in FDTD Models of Microwave Circuits using Polynomial Chaos
    Austin, Andrew C. M.
    Sarris, Costas D.
    [J]. 2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,
  • [3] Multifidelity uncertainty quantification with models based on dissimilar parameters
    Zeng, Xiaoshu
    Geraci, Gianluca
    Eldred, Michael S.
    Jakeman, John D.
    Gorodetsky, Alex A.
    Ghanem, Roger
    [J]. Computer Methods in Applied Mechanics and Engineering, 2023, 415
  • [4] Uncertainty quantification in the parameters of soil constitutive models
    Xue, Yang
    Miao, Fa-Sheng
    Wu, Yi-Ping
    Wen, Tao
    Wang, Yan-Kun
    [J]. Yantu Lixue/Rock and Soil Mechanics, 2024, 45 (09): : 2797 - 2807
  • [5] Uncertainty quantification for ecological models with random parameters
    Reimer, Jody R.
    Adler, Frederick R.
    Golden, Kenneth M.
    Narayan, Akil
    [J]. ECOLOGY LETTERS, 2022, 25 (10) : 2232 - 2244
  • [6] Efficient Computation of High-Order Electromagnetic Field Derivatives for Multiple Design Parameters in FDTD
    Liu, Kae-An
    Sarris, Costas D.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (10) : 4069 - 4083
  • [7] AN EFFICIENT NUMERICAL METHOD FOR UNCERTAINTY QUANTIFICATION IN CARDIOLOGY MODELS
    Gao, Xindan
    Ying, Wenjun
    Zhang, Zhiwen
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2019, 9 (03) : 275 - 294
  • [8] Determination of the parameters of circuit models of resistive microwave structures
    I. N. Malyshev
    S. M. Nikulin
    V. N. Utkin
    [J]. Measurement Techniques, 2008, 51 : 887 - 892
  • [9] Determination of the parameters of circuit models of resistive microwave structures
    Malyshev, I. N.
    Nikulin, S. M.
    Utkin, V. N.
    [J]. MEASUREMENT TECHNIQUES, 2008, 51 (08) : 887 - 892
  • [10] Rigorous uncertainty quantification and design with uncertain material models
    Sun, X.
    Kirchdoerfer, T.
    Ortiz, M.
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2020, 136