Efficient Uncertainty Quantification of FDTD based Microwave Circuit Models with Multiple Design Parameters

被引:2
|
作者
Zhang, Xingqi [1 ]
Liu, Kae-An [1 ]
Sarris, Costas D. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
关键词
finite-difference time-domain; microwave circuit modeling; orthogonal matching pursuit; polynomial chaos expansion; uncertainty quantification;
D O I
10.1109/mwsym.2019.8701065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The polynomial chaos expansion (PCE) method has emerged as a promising uncertainty quantification technique compared to the commonly used yet computationally inefficient Monte Carlo method. However, PCE-based methods generally suffer from a "curse of dimensionality", where the computational cost increases rapidly with the number of random variables included in the analysis. This paper applies an orthogonal matching pursuit algorithm to mitigate the computational cost of PCE and facilitate the uncertainty analysis in finite-difference time-domain (FDTD) models of microwave circuits. The performance is demonstrated by modeling a cascaded stub filter with 13 geometric and material parameters, where a considerable computational advantage is achieved.
引用
收藏
页码:121 / 123
页数:3
相关论文
共 50 条
  • [21] Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models
    Bhaumik, Prithwish
    Ghosal, Subhashis
    [J]. BERNOULLI, 2017, 23 (4B) : 3537 - 3570
  • [22] EM-based neural models for efficient RF/microwave MCM design
    Yagoub, Mustapha C. E.
    [J]. PROCEEDINGS OF THE THIRD IASTED INTERNATIONAL CONFERENCE ON ANTENNAS, RADAR, AND WAVE PROPAGATION, 2006, : 17 - 22
  • [23] Comparing the MESFET and HEMT models for efficient circuit design
    Touhami, R.
    Yagoub, M. C. E.
    Baudrand, H.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2007, 20 (03) : 149 - 161
  • [24] History matching and uncertainty quantification of facies models with multiple geological interpretations
    Hyucksoo Park
    Céline Scheidt
    Darryl Fenwick
    Alexandre Boucher
    Jef Caers
    [J]. Computational Geosciences, 2013, 17 : 609 - 621
  • [25] Time-Efficient Photonic Variability Simulator for Uncertainty Quantification of Photonic Integrated Circuit
    James, Aneek E.
    Meng, Xiang
    Gazman, Alexander
    Janosik, Natalie
    Bergman, Keren
    [J]. 2019 8TH ANNUAL IEEE PHOTONICS SOCIETY OPTICAL INTERCONNECTS CONFERENCE (OI), 2019,
  • [26] History matching and uncertainty quantification of facies models with multiple geological interpretations
    Park, Hyucksoo
    Scheidt, Celine
    Fenwick, Darryl
    Boucher, Alexandre
    Caers, Jef
    [J]. COMPUTATIONAL GEOSCIENCES, 2013, 17 (04) : 609 - 621
  • [27] A Data Compression Strategy for the Efficient Uncertainty Quantification of Time-Domain Circuit Responses
    Manfredi, Paolo
    Trinchero, Riccardo
    [J]. IEEE ACCESS, 2020, 8 : 92019 - 92027
  • [28] Efficient uncertainty quantification and management in the early stage design of composite applications
    Kumar, Dinesh
    Koutsawa, Yao
    Rauchs, Gaston
    Marchi, Mariapia
    Kavka, Carlos
    Belouettar, Salim
    [J]. COMPOSITE STRUCTURES, 2020, 251
  • [29] Quasi Monte Carlo Methods for Uncertainty Quantification of Partial Element Equivalent Circuit Models
    Parise, M.
    Ferranti, F.
    Romano, D.
    Lombardi, L.
    Antonini, G.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 1917 - 1921
  • [30] Ranking based uncertainty quantification for a multifidelity design approach
    Umakant, J.
    Sudhakar, K.
    Mujumdar, P. M.
    Rao, C. Raghavendra
    [J]. JOURNAL OF AIRCRAFT, 2007, 44 (02): : 410 - 419