Schur multipliers in Schatten-von Neumann classes

被引:0
|
作者
Conde-Alonso, Jose M. [1 ]
Gonzalez-Perez, Adrian M. [1 ]
Parcet, Javier [2 ]
Tablate, Eduardo [2 ]
机构
[1] Univ Autonoma Madrid, Inst Ciencias Matemat, Madrid 28049, Spain
[2] CSIC, Inst Ciencias Matemat, Madrid 28049, Spain
关键词
SMOOTH FOURIER MULTIPLIERS; L-P-SPACES; GROTHENDIECKS THEOREM; DECOMPOSITIONS; ALGEBRAS;
D O I
10.4007/annals.2023.198.3.5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a rather unexpected and simple criterion for the boundedness of Schur multipliers S-M on Schatten p-classes which solves a conjecture proposed by Mikael de la Salle. Given 1 < p < infinity, a simple form of our main result for R-n x R-n matrices reads as follows: ||S-M : S-p -> S-p||(cb) less than or similar to p(2)/p-1 Sigma(|gamma|less than or similar to[n/2]+1)|||x y|(|gamma|) {|partial derivative M-gamma(x)(x, y) | + |partial derivative M-gamma(y)(x , y)|}||(proportional to). In this form, it is a full matrix (nonToeplitz/nontrigonometric) amplification of the Hormander-Mikhlin multiplier theorem, which admits lower fractional differentiability orders sigma > n/2 as well. It trivially includes Arazy's conjecture for S-p-multipliers and extends it to alpha-divided differences. It also leads to new Littlewood-Paley characterizations of S-p-norms and strong applications in harmonic analysis for nilpotent and high rank simple Lie group algebras.
引用
收藏
页码:1229 / 1260
页数:32
相关论文
共 50 条
  • [1] Schur multipliers of Schatten-von Neumann classes Sp
    Aleksandrov, A. B.
    Peller, V. V.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [2] On Extrapolation Properties of Schatten-von Neumann Classes
    Lykov, K. V.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (01) : 57 - 61
  • [3] Berezin symbols and Schatten-von Neumann classes
    Karaev, MT
    [J]. MATHEMATICAL NOTES, 2002, 72 (1-2) : 185 - 192
  • [4] Schatten-von Neumann classes of integral operators
    Delgado, Julio
    Ruzhansky, Michael
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 1 - 29
  • [5] ALMOST-ORTHOGONALITY IN THE SCHATTEN-VON NEUMANN CLASSES
    Carbery, Anthony
    [J]. JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 151 - 158
  • [6] On Schatten-von Neumann Classes and Trace Class Estimates
    Gesztesy, Fritz
    Waurick, Marcus
    [J]. CALLIAS INDEX FORMULA REVISITED, 2016, 2157 : 23 - 33
  • [7] Operator-Lipschitz functions in Schatten-von Neumann classes
    Potapov, Denis
    Sukochev, Fedor
    [J]. ACTA MATHEMATICA, 2011, 207 (02) : 375 - 389
  • [8] Pseudo-differential operators and Schatten-von Neumann classes
    Buzano, E
    Nicola, F
    [J]. ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 117 - 130
  • [9] Natural Lacunae Method and Schatten-Von Neumann Classes of the Convergence Exponent
    Kukushkin, Maksim V.
    [J]. MATHEMATICS, 2022, 10 (13)
  • [10] Schur multiplier projections on the von Neumann-Schatten classes
    Doust, I
    Gillespie, TA
    [J]. JOURNAL OF OPERATOR THEORY, 2005, 53 (02) : 251 - 272