Schur multipliers of Schatten-von Neumann classes Sp

被引:4
|
作者
Aleksandrov, A. B. [1 ]
Peller, V. V. [2 ,3 ]
机构
[1] Steklov Inst Math, St Petersburg Branch, Fontanka 27, St Petersburg 191023, Russia
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Peoples Friendship Univ Russia RUDN Univ, 6 Miklukho Maklaya St, Moscow 117198, Russia
基金
俄罗斯科学基金会;
关键词
Schur multipliers; Completely bounded Schur multipliers; Tensor products; Double operator integrals; NONCOMMUTATIVE KHINTCHINE; INEQUALITIES; HANKEL;
D O I
10.1016/j.jfa.2020.108683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study in this paper properties of Schur multipliers of Schatten von Neumann classes S-p. We prove that for p <= 1, Schur multipliers of S-p are necessarily completely bounded. We also introduce for p <= 1 a scale W-p of tensor products of l(infinity) and prove that matrices in W-p are Schur multipliers of S-p. We compare this sufficient condition with the sufficient condition of membership in the p-tensor product of l(infinity) spaces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Schur multipliers in Schatten-von Neumann classes
    Conde-Alonso, Jose M.
    Gonzalez-Perez, Adrian M.
    Parcet, Javier
    Tablate, Eduardo
    [J]. ANNALS OF MATHEMATICS, 2023, 198 (03) : 1229 - 1260
  • [2] On Extrapolation Properties of Schatten-von Neumann Classes
    Lykov, K. V.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (01) : 57 - 61
  • [3] Berezin symbols and Schatten-von Neumann classes
    Karaev, MT
    [J]. MATHEMATICAL NOTES, 2002, 72 (1-2) : 185 - 192
  • [4] Schatten-von Neumann classes of integral operators
    Delgado, Julio
    Ruzhansky, Michael
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 1 - 29
  • [5] ALMOST-ORTHOGONALITY IN THE SCHATTEN-VON NEUMANN CLASSES
    Carbery, Anthony
    [J]. JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 151 - 158
  • [6] On Schatten-von Neumann Classes and Trace Class Estimates
    Gesztesy, Fritz
    Waurick, Marcus
    [J]. CALLIAS INDEX FORMULA REVISITED, 2016, 2157 : 23 - 33
  • [7] Operator-Lipschitz functions in Schatten-von Neumann classes
    Potapov, Denis
    Sukochev, Fedor
    [J]. ACTA MATHEMATICA, 2011, 207 (02) : 375 - 389
  • [8] Pseudo-differential operators and Schatten-von Neumann classes
    Buzano, E
    Nicola, F
    [J]. ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 117 - 130
  • [9] Natural Lacunae Method and Schatten-Von Neumann Classes of the Convergence Exponent
    Kukushkin, Maksim V.
    [J]. MATHEMATICS, 2022, 10 (13)
  • [10] Schur multiplier projections on the von Neumann-Schatten classes
    Doust, I
    Gillespie, TA
    [J]. JOURNAL OF OPERATOR THEORY, 2005, 53 (02) : 251 - 272