Schur multiplier projections on the von Neumann-Schatten classes

被引:0
|
作者
Doust, I [1 ]
Gillespie, TA
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
von Neumann-Schatten classes; Schur multipliers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 1 < p < infinity let C-p denote the usual von Neumann-Schatten ideal of compact operators on l(2). The standard basis of C-p is a conditional one and so it is of interest to be able to identify the sets of coordinates for which the corresponding projection is bounded. In this paper we survey and extend the known classes of bounded projections of this type. In particular we show that some recent results from spectral theory allow one to prove boundedness of a projection by checking simple geometric conditions on the associated set of coordinates.
引用
收藏
页码:251 / 272
页数:22
相关论文
共 50 条
  • [1] Schur multipliers in Schatten-von Neumann classes
    Conde-Alonso, Jose M.
    Gonzalez-Perez, Adrian M.
    Parcet, Javier
    Tablate, Eduardo
    [J]. ANNALS OF MATHEMATICS, 2023, 198 (03) : 1229 - 1260
  • [2] Schur multipliers of Schatten-von Neumann classes Sp
    Aleksandrov, A. B.
    Peller, V. V.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [3] von Neumann-Schatten Dual Frames and their Perturbations
    Arefijamaal, Ali Akbar
    Sadeghi, Ghadir
    [J]. RESULTS IN MATHEMATICS, 2016, 69 (3-4) : 431 - 441
  • [4] Von Neumann-Schatten Frames in Separable Banach Spaces
    Sadeghi, Ghadir
    Arefijamaal, Aliakbar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (03) : 525 - 535
  • [5] VON NEUMANN-SCHATTEN p-FRAMES FOR OPERATORS
    Takhteh, Farkhondeh
    Azandaryani, Morteza Mirzaee
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (02) : 579 - 591
  • [6] Duals and approximate duals of von Neumann-Schatten p-frames
    Takhteh, Farkhondeh
    Azandaryani, Morteza Mirzaee
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (06) : 913 - 921
  • [7] Upper bounds for Neumann-Schatten norms
    Brasche, JF
    [J]. POTENTIAL ANALYSIS, 2001, 14 (02) : 175 - 205
  • [8] On Extrapolation Properties of Schatten–von Neumann Classes
    K. V. Lykov
    [J]. Functional Analysis and Its Applications, 2018, 52 : 57 - 61
  • [9] Characterization and some properties of von Neumann-Schatten p-Bessel sequences
    Takhteh, Farkhondeh
    Azandaryani, Morteza Mirzaee
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (03) : 405 - 422
  • [10] Berezin symbols and Schatten-von Neumann classes
    Karaev, MT
    [J]. MATHEMATICAL NOTES, 2002, 72 (1-2) : 185 - 192