Natural Lacunae Method and Schatten-Von Neumann Classes of the Convergence Exponent

被引:5
|
作者
Kukushkin, Maksim V. [1 ]
机构
[1] Moscow State Univ Civil Engn, Moscow 129337, Russia
关键词
strictly accretive operator; Abel-Lidskii basis property; Schatten-von Neumann class; convergence exponent; counting function; OPERATORS; EQUATION;
D O I
10.3390/math10132237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our first aim is to clarify the results obtained by Lidskii devoted to the decomposition on the root vector system of the non-selfadjoint operator. We use a technique of the entire function theory and introduce a so-called Schatten-von Neumann class of the convergence exponent. Considering strictly accretive operators satisfying special conditions formulated in terms of the norm, we construct a sequence of contours of the power type that contrasts the results by Lidskii, where a sequence of contours of the exponential type was used.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] On Extrapolation Properties of Schatten-von Neumann Classes
    Lykov, K. V.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (01) : 57 - 61
  • [2] Berezin symbols and Schatten-von Neumann classes
    Karaev, MT
    [J]. MATHEMATICAL NOTES, 2002, 72 (1-2) : 185 - 192
  • [3] Schur multipliers in Schatten-von Neumann classes
    Conde-Alonso, Jose M.
    Gonzalez-Perez, Adrian M.
    Parcet, Javier
    Tablate, Eduardo
    [J]. ANNALS OF MATHEMATICS, 2023, 198 (03) : 1229 - 1260
  • [4] Schatten-von Neumann classes of integral operators
    Delgado, Julio
    Ruzhansky, Michael
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 1 - 29
  • [5] ALMOST-ORTHOGONALITY IN THE SCHATTEN-VON NEUMANN CLASSES
    Carbery, Anthony
    [J]. JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 151 - 158
  • [6] Schur multipliers of Schatten-von Neumann classes Sp
    Aleksandrov, A. B.
    Peller, V. V.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [7] On Schatten-von Neumann Classes and Trace Class Estimates
    Gesztesy, Fritz
    Waurick, Marcus
    [J]. CALLIAS INDEX FORMULA REVISITED, 2016, 2157 : 23 - 33
  • [8] Operator-Lipschitz functions in Schatten-von Neumann classes
    Potapov, Denis
    Sukochev, Fedor
    [J]. ACTA MATHEMATICA, 2011, 207 (02) : 375 - 389
  • [9] Pseudo-differential operators and Schatten-von Neumann classes
    Buzano, E
    Nicola, F
    [J]. ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 117 - 130
  • [10] Toeplitz Operators with Radial Symbols on Bergman Space and Schatten-von Neumann Classes
    Bendaoud, Z.
    Kupin, S.
    Toumache, K.
    Toure, B.
    Zarouf, R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2020, 16 (01) : 3 - 26