Schur multipliers in Schatten-von Neumann classes

被引:0
|
作者
Conde-Alonso, Jose M. [1 ]
Gonzalez-Perez, Adrian M. [1 ]
Parcet, Javier [2 ]
Tablate, Eduardo [2 ]
机构
[1] Univ Autonoma Madrid, Inst Ciencias Matemat, Madrid 28049, Spain
[2] CSIC, Inst Ciencias Matemat, Madrid 28049, Spain
关键词
SMOOTH FOURIER MULTIPLIERS; L-P-SPACES; GROTHENDIECKS THEOREM; DECOMPOSITIONS; ALGEBRAS;
D O I
10.4007/annals.2023.198.3.5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a rather unexpected and simple criterion for the boundedness of Schur multipliers S-M on Schatten p-classes which solves a conjecture proposed by Mikael de la Salle. Given 1 < p < infinity, a simple form of our main result for R-n x R-n matrices reads as follows: ||S-M : S-p -> S-p||(cb) less than or similar to p(2)/p-1 Sigma(|gamma|less than or similar to[n/2]+1)|||x y|(|gamma|) {|partial derivative M-gamma(x)(x, y) | + |partial derivative M-gamma(y)(x , y)|}||(proportional to). In this form, it is a full matrix (nonToeplitz/nontrigonometric) amplification of the Hormander-Mikhlin multiplier theorem, which admits lower fractional differentiability orders sigma > n/2 as well. It trivially includes Arazy's conjecture for S-p-multipliers and extends it to alpha-divided differences. It also leads to new Littlewood-Paley characterizations of S-p-norms and strong applications in harmonic analysis for nilpotent and high rank simple Lie group algebras.
引用
收藏
页码:1229 / 1260
页数:32
相关论文
共 50 条