REGULARIZED TRACE FORMULA FOR DISCRETE OPERATORS WITH A PERTURBATION IN THE SCHATTEN-VON NEUMANN CLASS

被引:2
|
作者
Murtazin, Kh. Kh. [1 ]
Fazullin, Z. Yu. [1 ]
机构
[1] Bashkir State Univ, Zaki Validi Str 32, Ufa 450074, Russia
来源
UFA MATHEMATICAL JOURNAL | 2015年 / 7卷 / 04期
关键词
perturbation theory; regularized trace; discrete operator; spectrum; resolvent;
D O I
10.13108/2015-7-4-104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we study a regularized trace formula for discrete self-adjoint operators with a perturbation in Schatten-von Neumann class (sigma(p), p is an element of N). We prove that the regularized trace vanishes after deducting (p - 1) terms of perturbation theory if there are no dilating gaps in the spectrum of the unperturbed operator.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 50 条
  • [1] On Schatten-von Neumann Classes and Trace Class Estimates
    Gesztesy, Fritz
    Waurick, Marcus
    CALLIAS INDEX FORMULA REVISITED, 2016, 2157 : 23 - 33
  • [2] An interesting class of operators with unusual Schatten-von Neumann behavior
    Aleksandrov, AB
    Janson, S
    Peller, VV
    Rochberg, R
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 61 - 149
  • [3] Schatten-von Neumann classes of integral operators
    Delgado, Julio
    Ruzhansky, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 1 - 29
  • [4] On some eigenvalue inequalities for Schatten-von Neumann operators
    Lin, Minghua
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (05) : 517 - 522
  • [5] Schatten-von Neumann Characteristic of Tensor Product Operators
    Ipek, Al Pembe
    Ismailov, Zameddin I.
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [6] INEQUALITIES OF THE CARLEMAN TYPE FOR SCHATTEN-VON NEUMANN OPERATORS
    Gil, M. I.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (02) : 203 - 213
  • [7] Schatten-von Neumann Characteristic of Tensor Product Operators
    Al, Pembe Ipek
    Ismailov, Zameddin I.
    FILOMAT, 2020, 34 (10) : 3411 - 3415
  • [8] Inequalities for imaginary parts of eigenvalues of Schatten-von Neumann operators
    Gil, Michael
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (03) : 801 - 807
  • [9] Pseudo-differential operators and Schatten-von Neumann classes
    Buzano, E
    Nicola, F
    ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 117 - 130
  • [10] VON NEUMANN TYPE TRACE INEQUALITIES FOR SCHATTEN-CLASS OPERATORS
    Dirr, Gunther
    vom Ende, Frederik
    JOURNAL OF OPERATOR THEORY, 2020, 84 (02) : 323 - 338