Multi-term time-fractional stochastic system with multiple delays in control

被引:5
|
作者
Raheem, A. [1 ]
Afreen, A. [1 ]
Khatoon, A. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Caputo fractional derivative; Multi-term time-fractional system; Multiple delays; Stochastic system; Controllability; CONTROLLABILITY;
D O I
10.1016/j.chaos.2022.112979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study a multi-term time-fractional stochastic differential equation with multiple delays in control. We employ a general mild solution of the system, achieved by the generalization of the semigroup as a (alpha, gamma(i))-resolvent family. An approach to transforming the controllability problem into a fixed point problem is developed to examine the controllability results. An example is given to illustrate the results.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192
  • [22] Multi-term time-fractional Bloch equations and application in magnetic resonance imaging
    Qin, Shanlin
    Liu, Fawang
    Turner, Ian
    Vegh, Viktor
    Yu, Qiang
    Yang, Qianqian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 308 - 319
  • [23] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    [J]. The European Physical Journal Plus, 134
  • [24] Classical unique continuation property for multi-term time-fractional evolution equations
    Ching-Lung Lin
    Gen Nakamura
    [J]. Mathematische Annalen, 2023, 385 : 551 - 574
  • [25] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [26] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    [J]. Journal of Scientific Computing, 2020, 82
  • [27] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [28] Analytical and numerical solutions of a multi-term time-fractional Burgers' fluid model
    Zhang, Jinghua
    Liu, Fawang
    Lin, Zeng
    Anh, Vo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 356 : 1 - 12
  • [29] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [30] Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation
    Sun, Liangliang
    Zhang, Yun
    Wei, Ting
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 228 - 245