Analytical and numerical solutions of a multi-term time-fractional Burgers' fluid model

被引:17
|
作者
Zhang, Jinghua [1 ]
Liu, Fawang [2 ,3 ]
Lin, Zeng [4 ]
Anh, Vo [5 ]
机构
[1] Guangxi Univ Finance & Econ, Sch Informat & Stat, Nanning 530003, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[5] Swinburne Univ Technol, Fac Sci Engn & Technol, POB 218, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Multi-term time-fractional Burgers' fluid model; WSGD scheme; Legendre spectral method; CWSGD scheme; STOKES 1ST PROBLEM; 2 SIDE WALLS; THERMAL CONVECTIVE INSTABILITY; GENERALIZED 2ND-GRADE FLUID; POROUS HALF-SPACE; OLDROYD-B FLUID; VISCOELASTIC FLUID; PARTICLE METHOD; UNSTEADY-FLOW; HELICAL FLOWS;
D O I
10.1016/j.amc.2019.02.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a multi-term time-fractional Burgers' fluid model (MT-TFBFM). The analytical solution of MT-TFBFM is obtained by the method of separation of variables. We present a unified numerical scheme by virtue of the weighted shifted Grunwald difference (WSGD) scheme in time and Legendre spectral method in space. Especially, the corrected weighted shifted Grunwald difference (CWSGD) scheme is utilized to improve the convergence accuracy. Three examples are given to illustrate the stability, accuracy and effectiveness of the proposed numerical scheme. (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Analytical and numerical solutions of a two-dimensional multi-term time-fractional Oldroyd-B model
    Zhang, Jinghua
    Liu, Fawang
    Anh, Vo V.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 875 - 893
  • [2] A computational procedure and analysis for multi-term time-fractional Burgers-type equation
    Kanth, Ravi A. S., V
    Garg, Neetu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9218 - 9232
  • [3] Simulation of the approximate solutions of the time-fractional multi-term wave equations
    Abdel-Rehim, E. A.
    El-Sayed, A. M. A.
    Hashem, A. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1134 - 1154
  • [4] A local meshless method for the numerical solution of multi-term time-fractional generalized Oldroyd-B fluid model
    Aljawi, Salma
    Kamran
    Aloqaily, Ahmad
    Mlaiki, Nabil
    HELIYON, 2024, 10 (14)
  • [5] Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
    Jiang, H.
    Liu, F.
    Turner, I.
    Burrage, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3377 - 3388
  • [6] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [7] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [8] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [9] Controllability of multi-term time-fractional differential systems
    Singh, Vikram
    Pandey, Dwijendra N.
    JOURNAL OF CONTROL AND DECISION, 2020, 7 (02) : 109 - 125
  • [10] Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations
    El-Sayed, A. M. A.
    El-Kalla, I. L.
    Ziada, E. A. A.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (08) : 788 - 797