Analytical and numerical solutions of a multi-term time-fractional Burgers' fluid model

被引:17
|
作者
Zhang, Jinghua [1 ]
Liu, Fawang [2 ,3 ]
Lin, Zeng [4 ]
Anh, Vo [5 ]
机构
[1] Guangxi Univ Finance & Econ, Sch Informat & Stat, Nanning 530003, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[5] Swinburne Univ Technol, Fac Sci Engn & Technol, POB 218, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Multi-term time-fractional Burgers' fluid model; WSGD scheme; Legendre spectral method; CWSGD scheme; STOKES 1ST PROBLEM; 2 SIDE WALLS; THERMAL CONVECTIVE INSTABILITY; GENERALIZED 2ND-GRADE FLUID; POROUS HALF-SPACE; OLDROYD-B FLUID; VISCOELASTIC FLUID; PARTICLE METHOD; UNSTEADY-FLOW; HELICAL FLOWS;
D O I
10.1016/j.amc.2019.02.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a multi-term time-fractional Burgers' fluid model (MT-TFBFM). The analytical solution of MT-TFBFM is obtained by the method of separation of variables. We present a unified numerical scheme by virtue of the weighted shifted Grunwald difference (WSGD) scheme in time and Legendre spectral method in space. Especially, the corrected weighted shifted Grunwald difference (CWSGD) scheme is utilized to improve the convergence accuracy. Three examples are given to illustrate the stability, accuracy and effectiveness of the proposed numerical scheme. (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Classical unique continuation property for multi-term time-fractional evolution equations
    Ching-Lung Lin
    Gen Nakamura
    Mathematische Annalen, 2023, 385 : 551 - 574
  • [42] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82
  • [43] Exact Controllability of Multi-Term Time-Fractional Differential System with Sequencing Techniques
    Singh, Vikram
    Pandey, Dwijendra N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 105 - 120
  • [44] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [45] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [46] Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
    Momani, S
    CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 930 - 937
  • [47] Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation
    Sun, Liangliang
    Zhang, Yun
    Wei, Ting
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 228 - 245
  • [48] Numerical analysis of multi-term time-fractional nonlinear subdiffusion equations with time delay: What could possibly go wrong?
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    Alikhanov, Anatoly A.
    Pimenov, Vladimir G.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [49] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985
  • [50] Analytical Approach to Space- and Time-Fractional Burgers Equations
    Yildirim, Ahmet
    Mohyud-Din, Syed Tauseef
    CHINESE PHYSICS LETTERS, 2010, 27 (09)