A NOTE ON DEGENERATE MULTI-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

被引:3
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
Degenerate multi-poly-Bernoulli polynomials; Multiple poly-logarithm; Stirling numbers; Bernoulli polynomials and numbers; INTEGRAL TAYLOR-SERIES; FORMULA; ZEROS;
D O I
10.2298/AADM200510005K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the degenerate multi-poly-Bernoulli numbers and polynomials which are defined by means of the multiple polylogarithms and degenerate versions of the multi-poly-Bernoulli numbers and polynomials. We investigate some properties for those numbers and polynomials. In ad-dition, we give some identities and relations for the degenerate multi-poly -Bernoulli numbers and polynomials.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条
  • [41] A note on degenerate derangement polynomials and numbers
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Jang, Lee-Chae
    AIMS MATHEMATICS, 2021, 6 (06): : 6469 - 6481
  • [42] A new approach to fully degenerate Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    FILOMAT, 2023, 37 (07) : 2269 - 2278
  • [43] A STUDY ON DEGENERATE q-BERNOULLI POLYNOMIALS AND NUMBERS
    Lee, Hui Young
    Yu, Chung Hyun
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (06): : 1303 - 1315
  • [44] CONVOLUTIONS OF GENERALIZED STIRLING NUMBERS AND DEGENERATE BERNOULLI POLYNOMIALS
    Komatsu, Takao
    Young, Paul Thomas
    FIBONACCI QUARTERLY, 2020, 58 (04): : 361 - 366
  • [45] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Taekyun Kim
    Dae San Kim
    Hyuck-In Kwon
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 749 - 753
  • [46] Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kwon, Jongkyum
    Kim, Taekyun
    SYMMETRY-BASEL, 2019, 11 (07):
  • [47] Some results on degenerate Daehee and Bernoulli numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Han Young Kim
    Jongkyum Kwon
    Advances in Difference Equations, 2020
  • [48] Some results on degenerate Daehee and Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Kim, Han Young
    Kwon, Jongkyum
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [49] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 749 - 753
  • [50] A Note on the (h,q)-Extension of Bernoulli Numbers and Bernoulli Polynomials
    Ryoo, C. S.
    Kim, T.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010