A NOTE ON DEGENERATE MULTI-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

被引:3
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
Degenerate multi-poly-Bernoulli polynomials; Multiple poly-logarithm; Stirling numbers; Bernoulli polynomials and numbers; INTEGRAL TAYLOR-SERIES; FORMULA; ZEROS;
D O I
10.2298/AADM200510005K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the degenerate multi-poly-Bernoulli numbers and polynomials which are defined by means of the multiple polylogarithms and degenerate versions of the multi-poly-Bernoulli numbers and polynomials. We investigate some properties for those numbers and polynomials. In ad-dition, we give some identities and relations for the degenerate multi-poly -Bernoulli numbers and polynomials.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条
  • [31] A Note on Parametric Kinds of the Degenerate Poly-Bernoulli and Poly-Genocchi Polynomials
    Kim, Taekyun
    Khan, Waseem A.
    Sharma, Sunil Kumar
    Ghayasuddin, Mohd
    SYMMETRY-BASEL, 2020, 12 (04):
  • [32] Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter
    Khan, Waseem A.
    Khan, Idrees A.
    Ali, Musharraf
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 3 - 15
  • [33] Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol-Bernoulli Polynomials and Numbers, and Degenerate Apostol-Euler Polynomials and Numbers
    Jin, Siqintuya
    Dagli, Muhammet Cihat
    Qi, Feng
    AXIOMS, 2022, 11 (09)
  • [35] A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind
    Kim, Hye Kyung
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2020, 12 (07):
  • [36] Representations of degenerate poly-Bernoulli polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Journal of Inequalities and Applications, 2021
  • [37] A Note on a New Type of Degenerate Bernoulli Numbers
    D. S. Kim
    T. Kim
    Russian Journal of Mathematical Physics, 2020, 27 : 227 - 235
  • [38] A Note on a New Type of Degenerate Bernoulli Numbers
    Kim, D. S.
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (02) : 227 - 235
  • [39] Representations of degenerate poly-Bernoulli polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    Lee, Hyunseok
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [40] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609