Tree-Homogeneous Quantum Markov Chains

被引:3
|
作者
Souissi, Abdessatar [1 ,2 ]
Mukhamedov, Farrukh [3 ,4 ]
Barhoumi, Abdessatar [2 ,5 ]
机构
[1] Qassim Univ, Coll Business Management, Dept Management Informat Syst, ArRass 58611, Saudi Arabia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hufuf 31982, Al Ahsa, Saudi Arabia
[3] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[4] Inst Math, 4 Univ Str,100125 Str, Tashkent 100125, Uzbekistan
[5] Univ Carthage, Math Phys Quantum Modeling & Mech Design, LR18ES45, Sidi Bou Said,Ave Republ, Carthage 1054, Tunisia
关键词
Markov chains; Cayley tree; Disordered phase; Random walks; RANDOM-WALKS; STATES; ENTROPY; MODELS;
D O I
10.1007/s10773-023-05276-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We clarify the structure of tree-homogeneous quantum Markov chains (THQMC) as a multi-dimensional quantum extension of homogeneous Markov chains. We provide a construction of a class of quantum Markov chains on the Cayley tree based on open quantum random walks. Moreover, we prove the uniqueness of THQMC for the construction under consideration, which means the absence of phase transitions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Some Strong Limit Theorems for Markov Chains of Order Two Indexed by a Non-homogeneous Tree
    Jin, Shaohua
    Jiang, Huihui
    Zhang, Lijuan
    Zhong, Yanyan
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 35 - 39
  • [32] Strong laws of large numbers for asymptotic even-odd Markov chains indexed by a homogeneous tree
    Yang, Weiguo
    Zhao, Yang
    Pan, Heng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) : 179 - 189
  • [33] Potential theory for quantum Markov states and other quantum Markov chains
    Ameur Dhahri
    Franco Fagnola
    Analysis and Mathematical Physics, 2023, 13
  • [34] Potential theory for quantum Markov states and other quantum Markov chains
    Dhahri, Ameur
    Fagnola, Franco
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [35] Markov chain Monte Carlo test of toric homogeneous Markov chains
    Takemura, Akimichi
    Hara, Hisayuki
    STATISTICAL METHODOLOGY, 2012, 9 (03) : 392 - 406
  • [36] A cutoff phenomenon for quantum Markov chains
    Kastoryano, Michael J.
    Reeb, David
    Wolf, Michael M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [37] Diagonal couplings of quantum Markov chains
    Kuemmerer, Burkhard
    Schwieger, Kay
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (02)
  • [38] Quantum Approximate Markov Chains are Thermal
    Kato, Kohtaro
    Brandao, Fernando G. S. L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) : 117 - 149
  • [39] Structure of backward quantum Markov chains
    Accardi, Luigi
    Soueidi, El Gheted
    Souissi, Abdessatar
    Rhaima, Mohamed
    Mukhamedov, Farrukh
    Mukhamedova, Farzona
    AIMS MATHEMATICS, 2024, 9 (10): : 28044 - 28057
  • [40] Quantum Approximate Markov Chains are Thermal
    Kohtaro Kato
    Fernando G. S. L. Brandão
    Communications in Mathematical Physics, 2019, 370 : 117 - 149