Tree-Homogeneous Quantum Markov Chains

被引:3
|
作者
Souissi, Abdessatar [1 ,2 ]
Mukhamedov, Farrukh [3 ,4 ]
Barhoumi, Abdessatar [2 ,5 ]
机构
[1] Qassim Univ, Coll Business Management, Dept Management Informat Syst, ArRass 58611, Saudi Arabia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hufuf 31982, Al Ahsa, Saudi Arabia
[3] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[4] Inst Math, 4 Univ Str,100125 Str, Tashkent 100125, Uzbekistan
[5] Univ Carthage, Math Phys Quantum Modeling & Mech Design, LR18ES45, Sidi Bou Said,Ave Republ, Carthage 1054, Tunisia
关键词
Markov chains; Cayley tree; Disordered phase; Random walks; RANDOM-WALKS; STATES; ENTROPY; MODELS;
D O I
10.1007/s10773-023-05276-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We clarify the structure of tree-homogeneous quantum Markov chains (THQMC) as a multi-dimensional quantum extension of homogeneous Markov chains. We provide a construction of a class of quantum Markov chains on the Cayley tree based on open quantum random walks. Moreover, we prove the uniqueness of THQMC for the construction under consideration, which means the absence of phase transitions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Model checking quantum Markov chains
    Feng, Yuan
    Yu, Nengkun
    Ying, Mingsheng
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2013, 79 (07) : 1181 - 1198
  • [42] Quantum Markov chains: A unification approach
    Accardi, Luigi
    Souissi, Abdessatar
    Soueidy, El Gheteb
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (02)
  • [43] Asymptotic properties of quantum Markov chains
    Novotny, J.
    Alber, G.
    Jex, I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (48)
  • [45] The Kemeny Constant for Finite Homogeneous Ergodic Markov Chains
    M. Catral
    S. J. Kirkland
    M. Neumann
    N.-S. Sze
    Journal of Scientific Computing, 2010, 45 : 151 - 166
  • [46] HOMOGENEOUS MARKOV-CHAINS WITH BOUNDED TRANSITION MATRIX
    HARTFIEL, DJ
    JOURNAL OF APPLIED PROBABILITY, 1994, 31 (02) : 362 - 372
  • [47] Maxentropic continuous-time homogeneous Markov chains☆
    Bolzern, Paolo
    Colaneri, Patrizio
    De Nicolao, Giuseppe
    AUTOMATICA, 2025, 175
  • [48] ERGODIC BEHAVIOR OF A CLASS OF HOMOGENEOUS MARKOV-CHAINS
    GILLERT, H
    MATHEMATISCHE NACHRICHTEN, 1978, 83 : 209 - 217
  • [49] ERGODIC-THEOREMS FOR HOMOGENEOUS MARKOV-CHAINS
    NAGAEV, SV
    DOKLADY AKADEMII NAUK SSSR, 1989, 306 (02): : 283 - 286
  • [50] CONVERGENCE OF NON-HOMOGENEOUS BISTOCHASTIC MARKOV CHAINS
    MAKSIMOV, VM
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (04): : 604 - &