Tree-Homogeneous Quantum Markov Chains

被引:3
|
作者
Souissi, Abdessatar [1 ,2 ]
Mukhamedov, Farrukh [3 ,4 ]
Barhoumi, Abdessatar [2 ,5 ]
机构
[1] Qassim Univ, Coll Business Management, Dept Management Informat Syst, ArRass 58611, Saudi Arabia
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hufuf 31982, Al Ahsa, Saudi Arabia
[3] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[4] Inst Math, 4 Univ Str,100125 Str, Tashkent 100125, Uzbekistan
[5] Univ Carthage, Math Phys Quantum Modeling & Mech Design, LR18ES45, Sidi Bou Said,Ave Republ, Carthage 1054, Tunisia
关键词
Markov chains; Cayley tree; Disordered phase; Random walks; RANDOM-WALKS; STATES; ENTROPY; MODELS;
D O I
10.1007/s10773-023-05276-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We clarify the structure of tree-homogeneous quantum Markov chains (THQMC) as a multi-dimensional quantum extension of homogeneous Markov chains. We provide a construction of a class of quantum Markov chains on the Cayley tree based on open quantum random walks. Moreover, we prove the uniqueness of THQMC for the construction under consideration, which means the absence of phase transitions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] TAIL INDEX OF ASYMPTOTICALLY HOMOGENEOUS MARKOV CHAINS
    Kazakevicius, V.
    Skorniakov, V.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (04) : 372 - 390
  • [22] Tail index of asymptotically homogeneous Markov chains
    V. Kazakevičius
    V. Skorniakov
    Lithuanian Mathematical Journal, 2010, 50 : 372 - 390
  • [23] Collapsing of non-homogeneous Markov chains
    Dey, Agnish
    Mukherjea, Arunava
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 140 - 148
  • [24] Geometric ergodicity for classes of homogeneous Markov chains
    Galtchouk, L.
    Pergamenshchikov, S.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (10) : 3362 - 3391
  • [25] AN ERGODIC THEOREM FOR HOMOGENEOUS MARKOV-CHAINS
    NAGAEV, SV
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (01): : 27 - 30
  • [26] Boundary and entropy of space homogeneous Markov chains
    Kaimanovich, VA
    Woess, W
    ANNALS OF PROBABILITY, 2002, 30 (01): : 323 - 363
  • [27] Non-homogeneous quantum Markov states and quantum Markov fields
    Accardi, L
    Fidaleo, F
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (02) : 324 - 347
  • [28] Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree
    Farrukh Mukhamedov
    Abdessatar Barhoumi
    Abdessatar Souissi
    Journal of Statistical Physics, 2016, 163 : 544 - 567
  • [29] Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree
    Mukhamedov, Farrukh
    Barhoumi, Abdessatar
    Souissi, Abdessatar
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (03) : 544 - 567
  • [30] Some Strong Limit Theorems for Markov Chains of Continuous State Space on a Non-homogeneous Tree
    Jin Shao-hua
    Yan Lu
    Ding Chong-guang
    Chen Wen-feng
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL IV, PROCEEDINGS, 2009, : 267 - 270