Potential theory for quantum Markov states and other quantum Markov chains

被引:2
|
作者
Dhahri, Ameur [1 ]
Fagnola, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Quantum Markov chains; Potential; Recurrence; Transience;
D O I
10.1007/s13324-023-00790-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a potential theory for a class of Quantum Markov Chains whose forward and backward Markov transition operators satisfy a special composition rule. We study the associated recurrence, transient and irreducibility properties and we prove that an irreducible quantum Markov chain is either recurrent or transient. Moreover, we show that our theory applies in many cases such as: quantum random walks, diagonal states, entangled Quantum Markov Chains. A characterization of Entangled Quantum Markov Chains is also given.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Potential theory for quantum Markov states and other quantum Markov chains
    Ameur Dhahri
    Franco Fagnola
    Analysis and Mathematical Physics, 2023, 13
  • [2] Quantum Markov States and Quantum Hidden Markov States
    Bezhaeva Z.I.
    Oseledets V.I.
    Journal of Mathematical Sciences, 2019, 240 (5) : 507 - 514
  • [3] Quantum Markov chains
    Gudder, Stanley
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [4] Robustness of Quantum Markov Chains
    Ben Ibinson
    Noah Linden
    Andreas Winter
    Communications in Mathematical Physics, 2008, 277 : 289 - 304
  • [5] Decoherence in quantum Markov chains
    Medeiros Santos, Raqueline Azevedo
    Portugal, Renato
    Fragoso, Marcelo Dutra
    QUANTUM INFORMATION PROCESSING, 2014, 13 (02) : 559 - 572
  • [6] Decoherence in quantum Markov chains
    Raqueline Azevedo Medeiros Santos
    Renato Portugal
    Marcelo Dutra Fragoso
    Quantum Information Processing, 2014, 13 : 559 - 572
  • [7] Robustness of quantum Markov chains
    Ibinson, Ben
    Linden, Noah
    Winter, Andreas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (02) : 289 - 304
  • [8] Non-homogeneous quantum Markov states and quantum Markov fields
    Accardi, L
    Fidaleo, F
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (02) : 324 - 347
  • [9] Random quantum maps and their associated quantum Markov chains
    Sadr, Maysam Maysami
    Ganji, Monireh Barzegar
    POSITIVITY, 2023, 27 (01)
  • [10] Open Quantum Random Walks and Quantum Markov Chains
    A. Dhahri
    F. Mukhamedov
    Functional Analysis and Its Applications, 2019, 53 : 137 - 142