Robustness of Quantum Markov Chains

被引:0
|
作者
Ben Ibinson
Noah Linden
Andreas Winter
机构
[1] University of Bristol,Department of Mathematics
来源
关键词
Markov Chain; Quantum Channel; Relative Entropy; Markov State; Trace Distance;
D O I
暂无
中图分类号
学科分类号
摘要
If the conditional information of a classical probability distribution of three random variables is zero, then it obeys a Markov chain condition. If the conditional information is close to zero, then it is known that the distance (minimum relative entropy) of the distribution to the nearest Markov chain distribution is precisely the conditional information. We prove here that this simple situation does not obtain for quantum conditional information. We show that for tri-partite quantum states the quantum conditional information is always a lower bound for the minimum relative entropy distance to a quantum Markov chain state, but the distance can be much greater; indeed the two quantities can be of different asymptotic order and may even differ by a dimensional factor.
引用
收藏
页码:289 / 304
页数:15
相关论文
共 50 条
  • [1] Robustness of quantum Markov chains
    Ibinson, Ben
    Linden, Noah
    Winter, Andreas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (02) : 289 - 304
  • [2] Quantum Markov chains
    Gudder, Stanley
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [3] Decoherence in quantum Markov chains
    Medeiros Santos, Raqueline Azevedo
    Portugal, Renato
    Fragoso, Marcelo Dutra
    QUANTUM INFORMATION PROCESSING, 2014, 13 (02) : 559 - 572
  • [4] Decoherence in quantum Markov chains
    Raqueline Azevedo Medeiros Santos
    Renato Portugal
    Marcelo Dutra Fragoso
    Quantum Information Processing, 2014, 13 : 559 - 572
  • [5] Robustness in sequential discrimination of Markov chains under "Contamination"
    Kharin, A
    THEORY AND APPLICATION OF RECENT ROBUST METHODS, 2004, : 165 - 171
  • [6] Potential theory for quantum Markov states and other quantum Markov chains
    Ameur Dhahri
    Franco Fagnola
    Analysis and Mathematical Physics, 2023, 13
  • [7] Potential theory for quantum Markov states and other quantum Markov chains
    Dhahri, Ameur
    Fagnola, Franco
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [8] A cutoff phenomenon for quantum Markov chains
    Kastoryano, Michael J.
    Reeb, David
    Wolf, Michael M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [9] Quantum Markov Chains on a Caylay Tree
    Mukhamedov, Farrukh
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2011, 19 : 15 - 22
  • [10] Quantum Approximate Markov Chains are Thermal
    Kato, Kohtaro
    Brandao, Fernando G. S. L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) : 117 - 149