Potential theory for quantum Markov states and other quantum Markov chains

被引:2
|
作者
Dhahri, Ameur [1 ]
Fagnola, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Quantum Markov chains; Potential; Recurrence; Transience;
D O I
10.1007/s13324-023-00790-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a potential theory for a class of Quantum Markov Chains whose forward and backward Markov transition operators satisfy a special composition rule. We study the associated recurrence, transient and irreducibility properties and we prove that an irreducible quantum Markov chain is either recurrent or transient. Moreover, we show that our theory applies in many cases such as: quantum random walks, diagonal states, entangled Quantum Markov Chains. A characterization of Entangled Quantum Markov Chains is also given.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Transition Effect Matrices and Quantum Markov Chains
    Stan Gudder
    Foundations of Physics, 2009, 39 : 573 - 592
  • [42] Tree-Homogeneous Quantum Markov Chains
    Abdessatar Souissi
    Farrukh Mukhamedov
    Abdessatar Barhoumi
    International Journal of Theoretical Physics, 62
  • [43] Measuring the constrained reachability in quantum Markov chains
    Ming Xu
    Cheng-Chao Huang
    Yuan Feng
    Acta Informatica, 2021, 58 : 653 - 674
  • [44] Quantum Markov Chains and Logarithmic Trace Inequalities
    Sutter, David
    Berta, Mario
    Tomamichel, Marco
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1988 - 1992
  • [45] Quantum Searching on Markov Chains - The Complete Graph
    Lee, Min-Ho
    Choi, Nark Nyul
    Tanner, Gregor
    ACTA PHYSICA POLONICA A, 2021, 140 (06) : 538 - 544
  • [46] On Construction of Quantum Markov Chains on Cayley trees
    Accardi, Luigi
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    ALGEBRA, ANALYSIS AND QUANTUM PROBABILITY, 2016, 697
  • [47] Diagonalizability of Quantum Markov States on Trees
    Farrukh Mukhamedov
    Abdessatar Souissi
    Journal of Statistical Physics, 2021, 182
  • [48] Quantum Markov states on Cayley trees
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (01) : 313 - 333
  • [49] Quantum Markov semigroups and their stationary states
    Fagnola, F
    Rebolledo, R
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS II, 2003, : 77 - 128
  • [50] Diagonalizability of Quantum Markov States on Trees
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)