Order-chaos transition in correlation diagrams and quantization of period orbits

被引:2
|
作者
Arranz, F. J. [1 ]
Montes, J. [1 ,2 ]
Borondo, F. [2 ]
机构
[1] Univ Politecn Madrid, Grp Sistemas Complejos, Madrid 28040, Spain
[2] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
关键词
SCARS; SPECTRA;
D O I
10.1103/PhysRevE.108.034210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Eigenlevel correlation diagrams has proven to be a very useful tool to understand eigenstate characteristics of classically chaotic systems. In particular, we showed in a previous publication [Phys. Rev. Lett. 80, 944 (1998)] how to unveil the scarring mechanism, a cornerstone in the theory of quantum chaos, using the Planck constant as the correlation parameter. By increasing the Planck constant, we induced a transition from order to chaos, in which scarred wave functions appeared as the interaction of pairs of eigenstates in broad avoided crossings, forming a well-defined frontier in the correlation diagram. In this paper, we demonstrate that this frontier can be obtained by means of the semiclassical quantization of the involved scarring periodic orbits. Additionally, in order to calculate the Maslov index of each scarring periodic orbit, which is necessary for the semiclassical quantization procedure, we introduce a straightforward method based on Lagrangian descriptors. We illustrate the theory using the vibrational eigenstates of the LiCN molecular system.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Fibonacci order in the period-doubling cascade to chaos
    Linage, G.
    Montoya, Femando
    Sarmiento, A.
    Showalter, K.
    Parmananda, P.
    PHYSICS LETTERS A, 2006, 359 (06) : 638 - 639
  • [42] Heteroclinic orbits for a higher order phase transition problem
    Bates, PW
    Ren, XF
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1997, 8 : 149 - 163
  • [43] GLOBAL DYNAMICS OF A PLANAR MAPPING EXHIBITING ORBITS OF PERIOD-1, PERIOD-2, PERIOD-3 AND NO CHAOS
    GILBERT, AD
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 333 (1630): : 209 - 259
  • [44] Understanding the order-chaos-order transition in the planar elastic pendulum
    Anurag
    Mondal, Basudeb
    Bhattacharjee, Jayanta K.
    Chakraborty, Sagar
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402
  • [45] Stabilizing high-period orbits in chaos and generation of islands: A piecewise linear approach
    Tsubone, T
    Mitsubori, K
    Saito, T
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 257 - 260
  • [46] Spikes Adding to Infinity on Period-1 Orbits to Chaos in the Rössler System
    Xing, Siyuan
    Luo, Albert C. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [47] Characterization of transition to chaos with multiple positive - Lyapunov exponents by unstable periodic orbits
    Davidchack, R
    Lai, YC
    PHYSICS LETTERS A, 2000, 270 (06) : 308 - 313
  • [48] THE ORDER TO CHAOS TRANSITION IN AXIALLY SYMMETRICAL NUCLEAR SHAPES
    BLOCKI, J
    BRUT, F
    SROKOWSKI, T
    SWIATECKI, WJ
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C511 - C522
  • [49] Transition of separated shear layer from order to chaos
    Dong, YF
    Wei, ZL
    Xu, C
    PHYSICS OF FLUIDS, 1997, 9 (09) : 2580 - 2584
  • [50] Transition from order to chaos in reduced quantum dynamics
    Klobus, Waldemar
    Kurzynski, Pawel
    Kus, Marek
    Laskowski, Wieslaw
    Przybycien, Robert
    Zyczkowski, Karol
    PHYSICAL REVIEW E, 2022, 105 (03)