Order-chaos transition in correlation diagrams and quantization of period orbits

被引:2
|
作者
Arranz, F. J. [1 ]
Montes, J. [1 ,2 ]
Borondo, F. [2 ]
机构
[1] Univ Politecn Madrid, Grp Sistemas Complejos, Madrid 28040, Spain
[2] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
关键词
SCARS; SPECTRA;
D O I
10.1103/PhysRevE.108.034210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Eigenlevel correlation diagrams has proven to be a very useful tool to understand eigenstate characteristics of classically chaotic systems. In particular, we showed in a previous publication [Phys. Rev. Lett. 80, 944 (1998)] how to unveil the scarring mechanism, a cornerstone in the theory of quantum chaos, using the Planck constant as the correlation parameter. By increasing the Planck constant, we induced a transition from order to chaos, in which scarred wave functions appeared as the interaction of pairs of eigenstates in broad avoided crossings, forming a well-defined frontier in the correlation diagram. In this paper, we demonstrate that this frontier can be obtained by means of the semiclassical quantization of the involved scarring periodic orbits. Additionally, in order to calculate the Maslov index of each scarring periodic orbit, which is necessary for the semiclassical quantization procedure, we introduce a straightforward method based on Lagrangian descriptors. We illustrate the theory using the vibrational eigenstates of the LiCN molecular system.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Chaos, order statistics and unstable periodic orbits
    Valsakumar, MC
    Satyanarayana, SVM
    Kanmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (40): : 6939 - 6947
  • [22] Nuclear masses: Evidence of order-chaos coexistence (vol 88, art. no. 092502, 2002)
    Bohigas, O
    Leboeuf, P
    PHYSICAL REVIEW LETTERS, 2002, 88 (12)
  • [23] Noise-Induced Multirhythmicity, Bursting, and Order-Chaos Transitions in the 3D Goldbeter System
    Ryashko, Lev
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (10):
  • [24] NUCLEAR DISSIPATION AND THE ORDER TO CHAOS TRANSITION
    SWIATECKI, WJ
    NUCLEAR PHYSICS A, 1988, 488 : C375 - C393
  • [25] Area preserving nontwist maps: Periodic orbits and transition to chaos
    delCastilloNegrete, D
    Greene, JM
    Morrison, PJ
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 91 (1-2) : 1 - 23
  • [26] Stochastic Bifurcations and Multistage Order-Chaos Transitions in a 4D Eco-Epidemiological Model
    Ryashko, Lev
    Perevalova, Tatyana
    Bashkirtseva, Irina
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (09):
  • [27] Complete transition diagrams of generic Hamiltonian flows with a few heteroclinic orbits
    Yokoyama, Tetsuo
    Yokoyama, Tomoo
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (02)
  • [28] Chaos, order, and periodic orbits in 3:1 resonant planetary dynamics
    Voyatzis, George
    ASTROPHYSICAL JOURNAL, 2008, 675 (01): : 802 - 816
  • [29] Stochastic transformations of multi-rhythmic dynamics and order-chaos transitions in a discrete 2D model
    Tsvetkov, Ivan
    Bashkirtseva, Irina
    Ryashko, Lev
    CHAOS, 2021, 31 (06)
  • [30] Chaos-low periodic orbits transition in a synchronous switched circuit
    Jabli, N.
    Khammari, H.
    Mimouni, M. Faouzi
    WSEAS Transactions on Circuits and Systems, 2008, 7 (12): : 1009 - 1019