Order-chaos transition in correlation diagrams and quantization of period orbits

被引:2
|
作者
Arranz, F. J. [1 ]
Montes, J. [1 ,2 ]
Borondo, F. [2 ]
机构
[1] Univ Politecn Madrid, Grp Sistemas Complejos, Madrid 28040, Spain
[2] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
关键词
SCARS; SPECTRA;
D O I
10.1103/PhysRevE.108.034210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Eigenlevel correlation diagrams has proven to be a very useful tool to understand eigenstate characteristics of classically chaotic systems. In particular, we showed in a previous publication [Phys. Rev. Lett. 80, 944 (1998)] how to unveil the scarring mechanism, a cornerstone in the theory of quantum chaos, using the Planck constant as the correlation parameter. By increasing the Planck constant, we induced a transition from order to chaos, in which scarred wave functions appeared as the interaction of pairs of eigenstates in broad avoided crossings, forming a well-defined frontier in the correlation diagram. In this paper, we demonstrate that this frontier can be obtained by means of the semiclassical quantization of the involved scarring periodic orbits. Additionally, in order to calculate the Maslov index of each scarring periodic orbit, which is necessary for the semiclassical quantization procedure, we introduce a straightforward method based on Lagrangian descriptors. We illustrate the theory using the vibrational eigenstates of the LiCN molecular system.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] FROM CLASSICAL PERIODIC-ORBITS TO THE QUANTIZATION OF CHAOS
    AURICH, R
    STEINER, F
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 437 (1901): : 693 - 714
  • [12] Order-chaos transitions in field theories with topological terms: A dynamical systems approach
    Mukku, C
    Sriram, MS
    Segar, J
    Bambah, BA
    Lakshmibala, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (09): : 3003 - 3020
  • [13] FACILITATING EMERGENCE: THE METAPHORICAL 'ORDER-CHAOS CONTINUUM' IN AN ENGAGED RESEARCH CONTEXT
    Burman, C. J.
    JOURNAL FOR NEW GENERATION SCIENCES, 2020, 17 (02) : 1 - 17
  • [15] Modular transformations, order-chaos transitions and pseudo-random number generation
    Bonelli, A
    Ruffo, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (07): : 987 - 997
  • [16] Reshaping-induced order-chaos routes in a damped driven Helmholtz oscillator
    Balibrea, F
    Chacón, R
    López, MA
    CHAOS SOLITONS & FRACTALS, 2005, 24 (02) : 459 - 470
  • [17] How random immigration impacts order-chaos transformations and extinction in population dynamics
    Ryashko, Lev
    Tsvetkov, Ivan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, 233 (23-24): : 3369 - 3377
  • [18] AN ALMOST EVERYWHERE VERSION OF SMITAL'S ORDER-CHAOS DICHOTOMY FOR INTERVAL MAPS
    Barrio Blaya, Alejo
    Jimenez Lopez, Victor
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 85 (01) : 29 - 50
  • [19] Dynamical variability, order-chaos transitions, and bursting Canards in the memristive Rulkov neuron model
    Bashkirtseva, I.
    Ryashko, L.
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [20] FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS
    Gkolias, Ioannis
    Daquin, Jerome
    Gachet, Fabien
    Rosengren, Aaron J.
    ASTRONOMICAL JOURNAL, 2016, 152 (05):