Order-chaos transition in correlation diagrams and quantization of period orbits

被引:2
|
作者
Arranz, F. J. [1 ]
Montes, J. [1 ,2 ]
Borondo, F. [2 ]
机构
[1] Univ Politecn Madrid, Grp Sistemas Complejos, Madrid 28040, Spain
[2] Univ Autonoma Madrid, Dept Quim, Madrid 28049, Spain
关键词
SCARS; SPECTRA;
D O I
10.1103/PhysRevE.108.034210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Eigenlevel correlation diagrams has proven to be a very useful tool to understand eigenstate characteristics of classically chaotic systems. In particular, we showed in a previous publication [Phys. Rev. Lett. 80, 944 (1998)] how to unveil the scarring mechanism, a cornerstone in the theory of quantum chaos, using the Planck constant as the correlation parameter. By increasing the Planck constant, we induced a transition from order to chaos, in which scarred wave functions appeared as the interaction of pairs of eigenstates in broad avoided crossings, forming a well-defined frontier in the correlation diagram. In this paper, we demonstrate that this frontier can be obtained by means of the semiclassical quantization of the involved scarring periodic orbits. Additionally, in order to calculate the Maslov index of each scarring periodic orbit, which is necessary for the semiclassical quantization procedure, we introduce a straightforward method based on Lagrangian descriptors. We illustrate the theory using the vibrational eigenstates of the LiCN molecular system.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Locating order-chaos-order transition in elastic pendulum
    Anurag
    Chakraborty, Sagar
    NONLINEAR DYNAMICS, 2022, 110 (01) : 37 - 53
  • [32] Locating order-chaos-order transition in elastic pendulum
    Sagar Anurag
    Nonlinear Dynamics, 2022, 110 : 37 - 53
  • [33] Phase transition from order to chaos in nuclei
    Wu, XH
    Li, ZX
    Zhang, YX
    Feng, RF
    Zhuo, YZ
    Gu, JZ
    NONEQUILIBRIUM AND NONLINEAR DYNAMICS IN NUCLEAR AND OTHER FINITE SYSTEMS, 2001, 597 : 327 - 335
  • [34] TRANSITION FROM ORDER TO CHAOS IN THE WAKE OF AN AIRFOIL
    WILLIAMSSTUBER, K
    GHARIB, M
    JOURNAL OF FLUID MECHANICS, 1990, 213 : 29 - 57
  • [35] Order-to-chaos transition in rotational nuclei
    Stephens, FS
    Deleplanque, MA
    Lee, IY
    Macchiavelli, AO
    Ward, D
    Fallon, P
    Cromaz, M
    Clark, RM
    Descovich, M
    Diamond, RM
    Rodriguez-Vieitez, E
    PHYSICAL REVIEW LETTERS, 2005, 94 (04)
  • [36] Chaos-order transition in matrix theory
    Aref'eva, IY
    Koshelev, AS
    Medvedev, PB
    MODERN PHYSICS LETTERS A, 1998, 13 (31) : 2481 - 2493
  • [37] Order, chaos, and dimensionality transition in a system of swarmalators
    Lizarraga, Joao U. F.
    O'Keeffe, Kevin P.
    de Aguiar, Marcus A. M.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [38] Transition from order to chaos in rotational nuclei
    Deleplanque, MA
    Stephens, FS
    Lee, IY
    Macchiavelli, AO
    Ward, D
    Fallon, P
    Cromaz, M
    Clark, RM
    Descovich, M
    Diamond, RM
    Rodriguez-Vieitez, E
    Nuclei at the Limits, 2005, 764 : 303 - 308
  • [39] Positive Maladjustment as a Transition From Chaos to Order
    Laycraft, Krystyna
    ROEPER REVIEW-A JOURNAL ON GIFTED EDUCATION, 2009, 31 (02): : 113 - 122
  • [40] Order-to-chaos transition in rotational nuclei
    Lee, I. Y.
    Stephens, F. S.
    Deleplanque, M. A.
    Macchiavelli, A. O.
    Ward, D.
    Fallon, P.
    Cromaz, M.
    Clark, R. M.
    Descovich, M.
    Diamond, R. M.
    Rodriguez-Vieitez, E.
    PHYSICA SCRIPTA, 2006, T125 (142-146) : 142 - 146