Using the bayesmeta R package for Bayesian random-effects meta-regression

被引:8
|
作者
Roever, Christian [1 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37073 Gottingen, Germany
关键词
Meta; -analysis; Subgroup analysis; Covariables; Moderators; Heterogeneity; RANDOM-EFFECTS METAANALYSIS; NETWORK METAANALYSIS; MODEL; HETEROGENEITY; TRIALS; FRAMEWORK; DESIGN; BIAS;
D O I
10.1016/j.cmpb.2022.107303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: Random-effects meta-analysis within a hierarchical normal modeling framework is com-monly implemented in a wide range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression approaches that in addition allow for the inclusion of study -level covariables.Methods: We describe the Bayesian meta-regression implementation provided in the bayesmeta R pack-age including the choice of priors, and we illustrate its practical use.Results: A wide range of example applications are given, such as binary and continuous covariables, sub-group analysis, indirect comparisons, and model selection. Example R code is provided.Conclusions: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale sim-ulation studies.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model
    Robbie C. M. van Aert
    Joris Mulder
    [J]. Psychonomic Bulletin & Review, 2022, 29 : 55 - 69
  • [42] Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model
    van Aert, Robbie C. M.
    Mulder, Joris
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2022, 29 (01) : 55 - 69
  • [43] REDOMA: Bayesian random-effects dose-optimization meta-analysis using spike-and-slab priors
    Yang, Cheng-Han
    Kwiatkowski, Evan
    Lee, J. Jack
    Lin, Ruitao
    [J]. STATISTICS IN MEDICINE, 2024, 43 (18) : 3484 - 3502
  • [44] Application of random-effects regression models in relapse research
    Hedeker, D
    Mermelstein, RJ
    [J]. ADDICTION, 1996, 91 : S211 - S229
  • [45] BAYESIAN HIERARCHICAL RANDOM-EFFECTS META-ANALYSIS AND DESIGN OF PHASE I CLINICAL TRIALS
    Lin, Ruitao
    Shi, Haolun
    Yin, Guosheng
    Thali, Peter F.
    Yuan, Ying
    Flowers, Christopher R.
    [J]. ANNALS OF APPLIED STATISTICS, 2022, 16 (04): : 2481 - 2504
  • [46] Bayesian beta regression with Bayesianbetareg R-package
    Cepeda-Cuervo, Edilberto
    Jaimes, Daniel
    Marin, Margarita
    Rojas, Javier
    [J]. COMPUTATIONAL STATISTICS, 2016, 31 (01) : 165 - 187
  • [47] Bayesian beta regression with Bayesianbetareg R-package
    Edilberto Cepeda-Cuervo
    Daniel Jaimes
    Margarita Marín
    Javier Rojas
    [J]. Computational Statistics, 2016, 31 : 165 - 187
  • [48] Using Bayesian Meta-Regression to Advance Prevention Science Research: an Introduction and Empirical Illustration
    Christopher G. Thompson
    Brandie Semma
    Naike Wang
    Idean Ettekal
    [J]. Prevention Science, 2022, 23 : 455 - 466
  • [49] unmconf : an R package for Bayesian regression with unmeasured confounders
    Hebdon, Ryan
    Stamey, James
    Kahle, David
    Zhang, Xiang
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [50] Using Bayesian Meta-Regression to Advance Prevention Science Research: an Introduction and Empirical Illustration
    Thompson, Christopher G.
    Semma, Brandie
    Wang, Naike
    Ettekal, Idean
    [J]. PREVENTION SCIENCE, 2022, 23 (03) : 455 - 466