BAYESIAN HIERARCHICAL RANDOM-EFFECTS META-ANALYSIS AND DESIGN OF PHASE I CLINICAL TRIALS

被引:0
|
作者
Lin, Ruitao [1 ]
Shi, Haolun [2 ]
Yin, Guosheng [3 ]
Thali, Peter F.
Yuan, Ying [1 ]
Flowers, Christopher R. [4 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[3] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[4] Univ Texas MD Anderson Canc Ctr, Dept Lymphoma Myeloma, Houston, TX USA
来源
ANNALS OF APPLIED STATISTICS | 2022年 / 16卷 / 04期
关键词
  Bayesian adaptive method; meta; -analysis; phase I clinical trials; power prior; random; Key effects model; CONTINUAL REASSESSMENT METHOD; FACTOR RECEPTOR INHIBITOR; MODEL-BASED METAANALYSIS; DAYS ON/7 DAYS; RAF KINASE; HISTORICAL INFORMATION; PRIOR DISTRIBUTIONS; JAPANESE PATIENTS; DRUG DEVELOPMENT; POWER PRIOR;
D O I
10.1214/22-AOAS1600
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a curve-free random-effects meta-analysis approach to combining data from multiple phase I clinical trials to identify an optimal dose. Our method accounts for between-study heterogeneity that may stem from different study designs, patient populations, or tumor types. We also develop a meta-analytic-predictive (MAP) method, based on a power prior, that incorporates data from multiple historical studies into the design and conduct of a new phase I trial. Performances of the proposed methods for data analysis and trial design are evaluated by extensive simulation studies. The proposed random-effects meta-analysis method provides more reliable dose selection than comparators that rely on parametric assumptions. The MAP-based dosefinding designs are generally more efficient than those that do not borrow information, especially when the current and historical studies are similar. The proposed methodologies are illustrated by a meta-analysis of five historical phase I studies of Sorafenib and design of a new phase I trial.
引用
收藏
页码:2481 / 2504
页数:24
相关论文
共 50 条
  • [1] Random-effects model for meta-analysis of clinical trials: An update
    DerSimonian, Rebecca
    Kacker, Raghu
    [J]. CONTEMPORARY CLINICAL TRIALS, 2007, 28 (02) : 105 - 114
  • [2] Random-effects meta-analysis for systematic reviews of phase I clinical trials: Rare events and missing data
    Kim, Mi-Ok
    Wang, Xia
    Liu, Chunyan
    Dorris, Kathleen
    Fouladi, Maryam
    Song, Seongho
    [J]. RESEARCH SYNTHESIS METHODS, 2017, 8 (02) : 124 - 135
  • [3] A Bayesian semiparametric model for random-effects meta-analysis
    Burr, D
    Doss, H
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 242 - 251
  • [4] Bayesian approaches to random-effects meta-analysis: A comparative study
    Smith, TC
    Spiegelhalter, DJ
    Thomas, A
    [J]. STATISTICS IN MEDICINE, 1995, 14 (24) : 2685 - 2699
  • [5] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294
  • [6] Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis
    Hamaguchi, Yuta
    Noma, Hisashi
    Nagashima, Kengo
    Yamada, Tomohide
    Furukawa, Toshi A.
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (02) : 394 - 405
  • [7] Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package
    Roever, Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (06): : 1 - 51
  • [8] metaan: Random-effects meta-analysis
    Kontopantelis, Evangelos
    Reeves, David
    [J]. STATA JOURNAL, 2010, 10 (03): : 395 - 407
  • [9] Multivariate random-effects meta-analysis
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (01): : 40 - 56
  • [10] Meta-analysis: Random-effects model
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (02) : 280 - 282