Using the bayesmeta R package for Bayesian random-effects meta-regression

被引:8
|
作者
Roever, Christian [1 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37073 Gottingen, Germany
关键词
Meta; -analysis; Subgroup analysis; Covariables; Moderators; Heterogeneity; RANDOM-EFFECTS METAANALYSIS; NETWORK METAANALYSIS; MODEL; HETEROGENEITY; TRIALS; FRAMEWORK; DESIGN; BIAS;
D O I
10.1016/j.cmpb.2022.107303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: Random-effects meta-analysis within a hierarchical normal modeling framework is com-monly implemented in a wide range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression approaches that in addition allow for the inclusion of study -level covariables.Methods: We describe the Bayesian meta-regression implementation provided in the bayesmeta R pack-age including the choice of priors, and we illustrate its practical use.Results: A wide range of example applications are given, such as binary and continuous covariables, sub-group analysis, indirect comparisons, and model selection. Example R code is provided.Conclusions: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale sim-ulation studies.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Random-Effects Meta-analysis of Inconsistent Effects
    Keum, Nana
    Hsieh, Chung-Cheng
    Cook, Nancy
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 161 (05) : 379 - 380
  • [32] metaan: Random-effects meta-analysis
    Kontopantelis, Evangelos
    Reeves, David
    [J]. STATA JOURNAL, 2010, 10 (03): : 395 - 407
  • [33] Multivariate random-effects meta-analysis
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (01): : 40 - 56
  • [34] Meta-analysis Using Flexible Random-effects Distribution Models
    Noma, Hisashi
    Nagashima, Kengo
    Kato, Shogo
    Teramukai, Satoshi
    Furukawa, Toshi A.
    [J]. JOURNAL OF EPIDEMIOLOGY, 2022, 32 (10) : 441 - 448
  • [35] Meta-analysis: Random-effects model
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (02) : 280 - 282
  • [36] APPLICATION OF RANDOM-EFFECTS PROBIT REGRESSION-MODELS
    GIBBONS, RD
    HEDEKER, D
    [J]. JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY, 1994, 62 (02) : 285 - 296
  • [37] Fixed-effect Versus Random-effects Models for Meta-analyses: Random-effects Models
    Halme, Alex L. E.
    McAlpine, Kristen
    Martini, Alberto
    [J]. EUROPEAN UROLOGY FOCUS, 2023, 9 (05): : 693 - 694
  • [38] Random-Effects Assumption in Meta-analyses
    Bracken, Michael B.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (01): : 81 - 81
  • [39] On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis
    Roever, Christian
    Bender, Ralf
    Dias, Sofia
    Schmid, Christopher H.
    Schmidli, Heinz
    Sturtz, Sibylle
    Weber, Sebastian
    Friede, Tim
    [J]. RESEARCH SYNTHESIS METHODS, 2021, 12 (04) : 448 - 474
  • [40] A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data
    Seide, Svenja E.
    Jensen, Katrin
    Kieser, Meinhard
    [J]. RESEARCH SYNTHESIS METHODS, 2020, 11 (03) : 363 - 378