On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis

被引:58
|
作者
Roever, Christian [1 ]
Bender, Ralf [2 ]
Dias, Sofia [3 ]
Schmid, Christopher H. [4 ,5 ]
Schmidli, Heinz [6 ]
Sturtz, Sibylle [2 ]
Weber, Sebastian [7 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37075 Gottingen, Germany
[2] Inst Qual & Efficiency Hlth Care IQWiG, Dept Med Biometry, Cologne, Germany
[3] Univ York, Ctr Reviews & Disseminat, York, N Yorkshire, England
[4] Brown Univ, Sch Publ Hlth, Dept Biostat, Providence, RI 02912 USA
[5] Brown Univ, Sch Publ Hlth, Ctr Evidence Synth Hlth, Providence, RI 02912 USA
[6] Novartis Pharma AG, Stat Methodol, Dev, Basel, Switzerland
[7] Novartis Pharma AG, Adv Exploratory Analyt, Basel, Switzerland
关键词
Bayes factor; GLMM; hierarchical model; marginal likelihood; variance component; RANDOM-EFFECTS METAANALYSIS; LIVER-TRANSPLANT RECIPIENTS; BETWEEN-STUDY HETEROGENEITY; HAMILTON RATING-SCALE; INTERLEUKIN-2-RECEPTOR ANTAGONISTS; PREDICTIVE-DISTRIBUTIONS; CLINICAL-TRIALS; REGRESSION; MODELS; SIZE;
D O I
10.1002/jrsm.1475
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The normal-normal hierarchical model (NNHM) constitutes a simple and widely used framework for meta-analysis. In the common case of only few studies contributing to the meta-analysis, standard approaches to inference tend to perform poorly, and Bayesian meta-analysis has been suggested as a potential solution. The Bayesian approach, however, requires the sensible specification of prior distributions. While noninformative priors are commonly used for the overall mean effect, the use of weakly informative priors has been suggested for the heterogeneity parameter, in particular in the setting of (very) few studies. To date, however, a consensus on how to generally specify a weakly informative heterogeneity prior is lacking. Here we investigate the problem more closely and provide some guidance on prior specification.
引用
收藏
页码:448 / 474
页数:27
相关论文
共 50 条
  • [1] A Bayesian semiparametric model for random-effects meta-analysis
    Burr, D
    Doss, H
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 242 - 251
  • [2] Assessing the amount of heterogeneity in random-effects meta-analysis
    Knapp, G
    Biggerstaff, BJ
    Hartung, J
    [J]. BIOMETRICAL JOURNAL, 2006, 48 (02) : 271 - 285
  • [3] Heterogeneity and study size in random-effects meta-analysis
    Bowater, Russell J.
    Escarela, Gabriel
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (01) : 2 - 16
  • [4] Bayesian estimation in random effects meta-analysis using a non-informative prior
    Bodnar, Olha
    Link, Alfred
    Arendacka, Barbora
    Possolo, Antonio
    Elster, Clemens
    [J]. STATISTICS IN MEDICINE, 2017, 36 (02) : 378 - 399
  • [5] Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis
    Roever, Christian
    Sturtz, Sibylle
    Lilienthal, Jona
    Bender, Ralf
    Friede, Tim
    [J]. STATISTICS IN MEDICINE, 2023, 42 (14) : 2439 - 2454
  • [6] Bayesian approaches to random-effects meta-analysis: A comparative study
    Smith, TC
    Spiegelhalter, DJ
    Thomas, A
    [J]. STATISTICS IN MEDICINE, 1995, 14 (24) : 2685 - 2699
  • [7] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294
  • [8] NON-INFORMATIVE BAYESIAN INFERENCE FOR HETEROGENEITY IN A GENERALIZED MARGINAL RANDOM EFFECTS META-ANALYSIS
    Bodnar, O.
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 100 : 7 - 23
  • [9] Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package
    Roever, Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (06): : 1 - 51
  • [10] Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis
    Hamaguchi, Yuta
    Noma, Hisashi
    Nagashima, Kengo
    Yamada, Tomohide
    Furukawa, Toshi A.
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (02) : 394 - 405