On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis

被引:58
|
作者
Roever, Christian [1 ]
Bender, Ralf [2 ]
Dias, Sofia [3 ]
Schmid, Christopher H. [4 ,5 ]
Schmidli, Heinz [6 ]
Sturtz, Sibylle [2 ]
Weber, Sebastian [7 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37075 Gottingen, Germany
[2] Inst Qual & Efficiency Hlth Care IQWiG, Dept Med Biometry, Cologne, Germany
[3] Univ York, Ctr Reviews & Disseminat, York, N Yorkshire, England
[4] Brown Univ, Sch Publ Hlth, Dept Biostat, Providence, RI 02912 USA
[5] Brown Univ, Sch Publ Hlth, Ctr Evidence Synth Hlth, Providence, RI 02912 USA
[6] Novartis Pharma AG, Stat Methodol, Dev, Basel, Switzerland
[7] Novartis Pharma AG, Adv Exploratory Analyt, Basel, Switzerland
关键词
Bayes factor; GLMM; hierarchical model; marginal likelihood; variance component; RANDOM-EFFECTS METAANALYSIS; LIVER-TRANSPLANT RECIPIENTS; BETWEEN-STUDY HETEROGENEITY; HAMILTON RATING-SCALE; INTERLEUKIN-2-RECEPTOR ANTAGONISTS; PREDICTIVE-DISTRIBUTIONS; CLINICAL-TRIALS; REGRESSION; MODELS; SIZE;
D O I
10.1002/jrsm.1475
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The normal-normal hierarchical model (NNHM) constitutes a simple and widely used framework for meta-analysis. In the common case of only few studies contributing to the meta-analysis, standard approaches to inference tend to perform poorly, and Bayesian meta-analysis has been suggested as a potential solution. The Bayesian approach, however, requires the sensible specification of prior distributions. While noninformative priors are commonly used for the overall mean effect, the use of weakly informative priors has been suggested for the heterogeneity parameter, in particular in the setting of (very) few studies. To date, however, a consensus on how to generally specify a weakly informative heterogeneity prior is lacking. Here we investigate the problem more closely and provide some guidance on prior specification.
引用
收藏
页码:448 / 474
页数:27
相关论文
共 50 条
  • [21] Prediction interval in random-effects meta-analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (04) : 586 - 588
  • [22] Sequential methods for random-effects meta-analysis
    Higgins, Julian P. T.
    Whitehead, Anne
    Simmonds, Mark
    [J]. STATISTICS IN MEDICINE, 2011, 30 (09) : 903 - 921
  • [23] Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies
    Lilienthal, Jona
    Sturtz, Sibylle
    Schuermann, Christoph
    Maiworm, Matthias
    Roever, Christian
    Friede, Tim
    Bender, Ralf
    [J]. RESEARCH SYNTHESIS METHODS, 2024, 15 (02) : 275 - 287
  • [24] Random-Effects Meta-analysis of Inconsistent Effects RESPONSE
    Cornell, John E.
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 161 (05) : 380 - +
  • [25] A penalization approach to random-effects meta-analysis
    Wang, Yipeng
    Lin, Lifeng
    Thompson, Christopher G.
    Chu, Haitao
    [J]. STATISTICS IN MEDICINE, 2022, 41 (03) : 500 - 516
  • [26] THE USE OF 'OFF THE SHELF' INFORMATIVE PRIOR DISTRIBUTIONS IN RANDOM EFFECT NETWORK META-ANALYSIS MODELS
    Batson, S.
    Abrams, K.
    Sutton, A.
    [J]. VALUE IN HEALTH, 2016, 19 (07) : A394 - A394
  • [27] A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data
    Seide, Svenja E.
    Jensen, Katrin
    Kieser, Meinhard
    [J]. RESEARCH SYNTHESIS METHODS, 2020, 11 (03) : 363 - 378
  • [28] Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model
    Robbie C. M. van Aert
    Joris Mulder
    [J]. Psychonomic Bulletin & Review, 2022, 29 : 55 - 69
  • [29] Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model
    van Aert, Robbie C. M.
    Mulder, Joris
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2022, 29 (01) : 55 - 69
  • [30] Comparison of statistical analysis using the random-effects and inverse variance heterogeneity models for a meta-analysis
    Fu, Wei
    Wang, Qin
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 108