Sequential methods for random-effects meta-analysis

被引:170
|
作者
Higgins, Julian P. T. [1 ]
Whitehead, Anne [2 ]
Simmonds, Mark [3 ]
机构
[1] Inst Publ Hlth, MRC Biostat Unit, Cambridge CB2 0SR, England
[2] Univ Lancaster, Dept Math & Stat, Med & Pharmaceut Stat Res Unit, Lancaster LA1 4YF, England
[3] Queen Mary Univ London, Wolfson Inst Prevent Med, Barts & London Sch Med & Dent, London EC1M 6BQ, England
关键词
meta-analysis; sequential methods; cumulative meta-analysis; prospective meta-analysis; prior distributions; CUMULATIVE METAANALYSIS; ITERATED LOGARITHM; INTERIM ANALYSES; CLINICAL-TRIALS; LAW;
D O I
10.1002/sim.4088
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although meta-analyses are typically viewed as retrospective activities, they are increasingly being applied prospectively to provide up-to-date evidence on specific research questions. When meta-analyses are updated account should be taken of the possibility of false-positive findings due to repeated significance tests. We discuss the use of sequential methods for meta-analyses that incorporate random effects to allow for heterogeneity across studies. We propose a method that uses an approximate semi-Bayes procedure to update evidence on the among-study variance, starting with an informative prior distribution that might be based on findings from previous meta-analyses. We compare our methods with other approaches, including the traditional method of cumulative meta-analysis, in a simulation study and observe that it has Type I and Type II error rates close to the nominal level. We illustrate the method using an example in the treatment of bleeding peptic ulcers. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:903 / 921
页数:19
相关论文
共 50 条
  • [1] Comments on 'Sequential methods for random-effects meta-analysis'
    Imberger, Georgina
    Gluud, Christian
    Wetterslev, Jorn
    [J]. STATISTICS IN MEDICINE, 2011, 30 (24) : 2965 - 2966
  • [2] Comparison of two random-effects methods of meta-analysis
    Hall, SM
    Brannick, MT
    [J]. JOURNAL OF APPLIED PSYCHOLOGY, 2002, 87 (02) : 377 - 389
  • [3] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294
  • [4] Multivariate random-effects meta-analysis
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (01): : 40 - 56
  • [5] metaan: Random-effects meta-analysis
    Kontopantelis, Evangelos
    Reeves, David
    [J]. STATA JOURNAL, 2010, 10 (03): : 395 - 407
  • [6] Meta-analysis: Random-effects model
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (02) : 280 - 282
  • [7] Random-Effects Meta-analysis of Inconsistent Effects
    Keum, Nana
    Hsieh, Chung-Cheng
    Cook, Nancy
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 161 (05) : 379 - 380
  • [8] Power analysis for random-effects meta-analysis
    Jackson, Dan
    Turner, Rebecca
    [J]. RESEARCH SYNTHESIS METHODS, 2017, 8 (03) : 290 - 302
  • [9] Sequential change detection and monitoring of temporal trends in random-effects meta-analysis
    Dogo, Samson Henry
    Clark, Allan
    Kulinskaya, Elena
    [J]. RESEARCH SYNTHESIS METHODS, 2017, 8 (02) : 220 - 235
  • [10] Prediction interval in random-effects meta-analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (04) : 586 - 588