Sequential change detection and monitoring of temporal trends in random-effects meta-analysis

被引:3
|
作者
Dogo, Samson Henry [1 ]
Clark, Allan [1 ]
Kulinskaya, Elena [1 ]
机构
[1] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
基金
英国经济与社会研究理事会;
关键词
sequential meta-analysis; cumulative meta-analysis; CUSUM; bootstrap; CUMULATIVE METAANALYSIS; ITERATED LOGARITHM; TRIALS; BOUNDARIES; OUTLIERS; MODEL; BIAS; LAW;
D O I
10.1002/jrsm.1222
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted based on the time it was conducted. The difficulties of sequential meta-analysis under the random-effects model are caused by dependencies in increments introduced by the estimation of the heterogeneity parameter tau(2). In this paper, we propose the use of a retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart similar to CUSUM chart. Simulation results show that the new method demonstrates good control of Type I error regardless of the number or size of the studies and the amount of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses. (C) 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
引用
收藏
页码:220 / 235
页数:16
相关论文
共 50 条
  • [1] Sequential methods for random-effects meta-analysis
    Higgins, Julian P. T.
    Whitehead, Anne
    Simmonds, Mark
    [J]. STATISTICS IN MEDICINE, 2011, 30 (09) : 903 - 921
  • [2] Comments on 'Sequential methods for random-effects meta-analysis'
    Imberger, Georgina
    Gluud, Christian
    Wetterslev, Jorn
    [J]. STATISTICS IN MEDICINE, 2011, 30 (24) : 2965 - 2966
  • [3] Random-Effects Meta-analysis of Inconsistent Effects: A Time for Change
    Cornell, John E.
    Mulrow, Cynthia D.
    Localio, Russell
    Stack, Catharine B.
    Meibohm, Anne R.
    Guallar, Eliseo
    Goodman, Steven N.
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 160 (04) : 267 - 270
  • [4] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294
  • [5] Multivariate random-effects meta-analysis
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (01): : 40 - 56
  • [6] metaan: Random-effects meta-analysis
    Kontopantelis, Evangelos
    Reeves, David
    [J]. STATA JOURNAL, 2010, 10 (03): : 395 - 407
  • [7] Meta-analysis: Random-effects model
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (02) : 280 - 282
  • [8] Random-Effects Meta-analysis of Inconsistent Effects
    Keum, Nana
    Hsieh, Chung-Cheng
    Cook, Nancy
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 161 (05) : 379 - 380
  • [9] Power analysis for random-effects meta-analysis
    Jackson, Dan
    Turner, Rebecca
    [J]. RESEARCH SYNTHESIS METHODS, 2017, 8 (03) : 290 - 302
  • [10] Prediction interval in random-effects meta-analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (04) : 586 - 588