NON-INFORMATIVE BAYESIAN INFERENCE FOR HETEROGENEITY IN A GENERALIZED MARGINAL RANDOM EFFECTS META-ANALYSIS

被引:0
|
作者
Bodnar, O. [1 ]
机构
[1] Orebro Univ, Sch Business, Unit Stat, Fak Sgatan 1, S-70182 Orebro, Sweden
关键词
Non-informative prior; generalized random effects model; meta-analysis; estimation of heterogeneity; elliptically contoured distribution; BETWEEN-STUDY HETEROGENEITY; PRIOR DISTRIBUTIONS; VARIANCE; TRIALS; VALUES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper an objective Bayesian inference is proposed for the heterogeneity parameter in a generalized marginal random effects model. Models of this kind are widely used in meta-analysis and in inter-laboratory comparisons. Under the assumption of elliptically contoured distributions, a reference prior for the model parameters is obtained and the analytical expression of the corresponding posterior is derived. We also state necessary conditions for the resulting posterior to be proper and for the existence of its first two moments. The obtained general theoretical results are illustrated for three popular families of elliptically contoured distributions: normal distribution, t-distribution, and Laplace distribution.
引用
收藏
页码:7 / 23
页数:17
相关论文
共 50 条
  • [1] Bayesian estimation in random effects meta-analysis using a non-informative prior
    Bodnar, Olha
    Link, Alfred
    Arendacka, Barbora
    Possolo, Antonio
    Elster, Clemens
    STATISTICS IN MEDICINE, 2017, 36 (02) : 378 - 399
  • [2] Bayesian analysis of the generalized gamma distribution using non-informative priors
    Ramos, Pedro L.
    Achcar, Jorge A.
    Moala, Fernando A.
    Ramos, Eduardo
    Louzada, Francisco
    STATISTICS, 2017, 51 (04) : 824 - 843
  • [3] On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis
    Roever, Christian
    Bender, Ralf
    Dias, Sofia
    Schmid, Christopher H.
    Schmidli, Heinz
    Sturtz, Sibylle
    Weber, Sebastian
    Friede, Tim
    RESEARCH SYNTHESIS METHODS, 2021, 12 (04) : 448 - 474
  • [4] Objective Bayesian Meta-Analysis Based on Generalized Marginal Multivariate Random Effects Model
    Bodnar, Olha
    Bodnar, Taras
    BAYESIAN ANALYSIS, 2024, 19 (02): : 531 - 564
  • [5] Bayesian inference for heterogeneity in meta-analysis
    Bodnar, Olha
    Muhumuza, Rebecca Nalule
    Possolo, Antonio
    METROLOGIA, 2020, 57 (06)
  • [6] Approximate Bayesian inference for random effects meta-analysis
    Abrams, K
    Sanso, B
    STATISTICS IN MEDICINE, 1998, 17 (02) : 201 - 218
  • [7] Objective Bayesian Inference for a Generalized Marginal Random Effects Model
    Bodnar, O.
    Link, A.
    Elster, C.
    BAYESIAN ANALYSIS, 2016, 11 (01): : 25 - 45
  • [8] Non-informative hierarchical Bayesian inference for non-negative matrix factorization
    Sun, Qingquan
    Lu, Jiang
    Wu, Yeqing
    Qiao, Haiyan
    Huang, Xinlin
    Hu, Fei
    SIGNAL PROCESSING, 2015, 108 : 309 - 321
  • [9] Generalized Bayesian non-informative prior estimation of Weibull parameter with interval censoring
    Guure, Chris Bambey
    Ibrahim, Noor Akma
    SCIENCEASIA, 2013, 39 : 75 - 79
  • [10] Non-informative vision enhances tactile acuity: A systematic review and meta-analysis
    Eads, Jacki
    Moseley, G. Lorimer
    Hillier, Susan
    NEUROPSYCHOLOGIA, 2015, 75 : 179 - 185