Using the bayesmeta R package for Bayesian random-effects meta-regression

被引:8
|
作者
Roever, Christian [1 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37073 Gottingen, Germany
关键词
Meta; -analysis; Subgroup analysis; Covariables; Moderators; Heterogeneity; RANDOM-EFFECTS METAANALYSIS; NETWORK METAANALYSIS; MODEL; HETEROGENEITY; TRIALS; FRAMEWORK; DESIGN; BIAS;
D O I
10.1016/j.cmpb.2022.107303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: Random-effects meta-analysis within a hierarchical normal modeling framework is com-monly implemented in a wide range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression approaches that in addition allow for the inclusion of study -level covariables.Methods: We describe the Bayesian meta-regression implementation provided in the bayesmeta R pack-age including the choice of priors, and we illustrate its practical use.Results: A wide range of example applications are given, such as binary and continuous covariables, sub-group analysis, indirect comparisons, and model selection. Example R code is provided.Conclusions: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale sim-ulation studies.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Bayesian network meta-regression hierarchical models using heavy-tailed multivariate random effects with covariate-dependent variances
    Li, Hao
    Lim, Daeyoung
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Kim, Sungduk
    Shah, Arvind K.
    Lin, Jianxin
    [J]. STATISTICS IN MEDICINE, 2021, 40 (15) : 3582 - 3603
  • [22] Assessment of vague and noninformative priors for Bayesian estimation of the realized random effects in random-effects meta-analysis
    Bodnar, Olha
    Elster, Clemens
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (01) : 1 - 20
  • [23] Assessment of vague and noninformative priors for Bayesian estimation of the realized random effects in random-effects meta-analysis
    Olha Bodnar
    Clemens Elster
    [J]. AStA Advances in Statistical Analysis, 2018, 102 : 1 - 20
  • [24] Optimal design in random-effects regression models
    Mentre, F
    Mallet, A
    Baccar, D
    [J]. BIOMETRIKA, 1997, 84 (02) : 429 - 442
  • [25] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294
  • [26] A RANDOM-EFFECTS REGRESSION-MODEL FOR METAANALYSIS
    BERKEY, CS
    HOAGLIN, DC
    MOSTELLER, F
    COLDITZ, GA
    [J]. STATISTICS IN MEDICINE, 1995, 14 (04) : 395 - 411
  • [27] Brq: an R package for Bayesian quantile regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2020, 78 (03): : 313 - 328
  • [28] Brq: an R package for Bayesian quantile regression
    Rahim Alhamzawi
    Haithem Taha Mohammad Ali
    [J]. METRON, 2020, 78 : 313 - 328
  • [29] APPLYING BAYESIAN META-REGRESSION TO THE STUDY OF THROMBOLYTIC THERAPY
    SCHMID, CH
    CAPPELLERI, JC
    LAU, J
    [J]. CLINICAL RESEARCH, 1994, 42 (02): : A290 - A290
  • [30] Selecting relevant moderators with Bayesian regularized meta-regression
    Van Lissa, Caspar J.
    van Erp, Sara
    Clapper, Eli-Boaz
    [J]. RESEARCH SYNTHESIS METHODS, 2023, 14 (02) : 301 - 322